dbo:abstract
|
- Die Jacobische Zetafunktion, auch Zeta Amplitudinis genannt, ist in der Mathematik die logarithmische Ableitung der Jacobischen Theta-Funktion. Benannt ist sie nach dem deutschen Mathematiker Carl Gustav Jacob Jacobi. (de)
- In mathematics, the Jacobi zeta function Z(u) is the logarithmic derivative of the Jacobi theta function Θ(u). It is also commonly denoted as Where E, K, and F are generic Incomplete Elliptical Integrals of the first and second kind. Jacobi Zeta Functions being kinds of Jacobi theta functions have applications to all there relevant fields and application. This relates Jacobi's common notation of, , , . to Jacobi's Zeta function.Some additional relations include , (en)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2620 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- Die Jacobische Zetafunktion, auch Zeta Amplitudinis genannt, ist in der Mathematik die logarithmische Ableitung der Jacobischen Theta-Funktion. Benannt ist sie nach dem deutschen Mathematiker Carl Gustav Jacob Jacobi. (de)
- In mathematics, the Jacobi zeta function Z(u) is the logarithmic derivative of the Jacobi theta function Θ(u). It is also commonly denoted as Where E, K, and F are generic Incomplete Elliptical Integrals of the first and second kind. Jacobi Zeta Functions being kinds of Jacobi theta functions have applications to all there relevant fields and application. This relates Jacobi's common notation of, , , . to Jacobi's Zeta function.Some additional relations include , (en)
|
rdfs:label
|
- Jacobische Zetafunktion (de)
- Jacobi zeta function (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |