An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In 2-dimensional hyperbolic geometry, the infinite-order pentagonal tiling is a regular tiling. It has Schläfli symbol of {5,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection.

Property Value
dbo:abstract
  • In 2-dimensional hyperbolic geometry, the infinite-order pentagonal tiling is a regular tiling. It has Schläfli symbol of {5,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection. (en)
  • 在幾何學中,無限階五邊形鑲嵌是一種位於雙曲平面仿緊空間鑲嵌圖形,由五邊形組成,在施萊夫利符號中用{5,∞}來表示,中以表示。每個頂點都是無限多個五邊形的公共顶点,也因此使這個圖形無法存於平面上。這個圖形每一條線都可以做為整個圖形的對稱線。 無限階五邊形鑲嵌可以視為一系列由五邊形組成的多面體之幾何極限,但也可以達到更高階數,利用虛階數表示其階數比無窮大更多,即超無限階五邊形鑲嵌,在中以表示。 由於無限階五邊形鑲嵌全部都是由五邊形組成,每個頂點相同、邊也等長,因此也是一種正幾何圖形。 (zh)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 42309332 (xsd:integer)
dbo:wikiPageLength
  • 1935 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 994243906 (xsd:integer)
dbo:wikiPageWikiLink
dbp:title
  • Hyperbolic tiling (en)
  • Poincaré hyperbolic disk (en)
dbp:urlname
  • HyperbolicTiling (en)
  • PoincareHyperbolicDisk (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In 2-dimensional hyperbolic geometry, the infinite-order pentagonal tiling is a regular tiling. It has Schläfli symbol of {5,∞}. All vertices are ideal, located at "infinity", seen on the boundary of the Poincaré hyperbolic disk projection. (en)
  • 在幾何學中,無限階五邊形鑲嵌是一種位於雙曲平面仿緊空間鑲嵌圖形,由五邊形組成,在施萊夫利符號中用{5,∞}來表示,中以表示。每個頂點都是無限多個五邊形的公共顶点,也因此使這個圖形無法存於平面上。這個圖形每一條線都可以做為整個圖形的對稱線。 無限階五邊形鑲嵌可以視為一系列由五邊形組成的多面體之幾何極限,但也可以達到更高階數,利用虛階數表示其階數比無窮大更多,即超無限階五邊形鑲嵌,在中以表示。 由於無限階五邊形鑲嵌全部都是由五邊形組成,每個頂點相同、邊也等長,因此也是一種正幾何圖形。 (zh)
rdfs:label
  • Infinite-order pentagonal tiling (en)
  • 無限階五邊形鑲嵌 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License