dbo:abstract
|
- Hybrid rocket fuel regression refers to the process by which the fuel grain of a hybrid-propellant rocket is converted from a solid to a gas that is combusted. It encompasses the regression rate, the distance that the fuel surface recedes over a given time, as well as the burn area, the surface area that is being eroded at a given moment. Because the quantity of fuel being burned is important for the effectiveness of combustion in the engine, the regression rate plays a fundamental role in the design and firing of a hybrid engine. Unfortunately, hybrid fuel grains tend to have extremely slow regression, requiring very long combustion chambers or complex port designs that result in excess mass. Regression rate has also proven quite difficult to predict, with advanced models still providing significant error when applied at various scales and with differing fuels. Recent research has centered around the development of more accurate models coupled with research into techniques for increasing regression rate. (en)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 16862 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- Hybrid rocket fuel regression refers to the process by which the fuel grain of a hybrid-propellant rocket is converted from a solid to a gas that is combusted. It encompasses the regression rate, the distance that the fuel surface recedes over a given time, as well as the burn area, the surface area that is being eroded at a given moment. (en)
|
rdfs:label
|
- Hybrid rocket fuel regression (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |