dbo:abstract
|
- In mathematics, in particular abstract algebra and topology, a homotopy Lie algebra (or -algebra) is a generalisation of the concept of a differential graded Lie algebra. To be a little more specific, the Jacobi identity only holds up to homotopy. Therefore, a differential graded Lie algebra can be seen as a homotopy Lie algebra where the Jacobi identity holds on the nose. These homotopy algebras are useful in classifying deformation problems over characteristic 0 in deformation theory because are classified by quasi-isomorphism classes of -algebras. This was later extended to all characteristics by Jonathan Pridham. Homotopy Lie algebras have applications within mathematics and mathematical physics; they are linked, for instance, to the Batalin–Vilkovisky formalism much like differential graded Lie algebras are. (en)
- 수학에서 L∞-대수(L∞-algebra) 또는 호모토피 리 대수(영어: homotopy Lie algebra)는 등급을 갖는 대수이다. 리 대수의 개념에서, 야코비 항등식이 오직 호모토피에 대하여 성립하도록 약화시킨 것이다. (ko)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 15976 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- 수학에서 L∞-대수(L∞-algebra) 또는 호모토피 리 대수(영어: homotopy Lie algebra)는 등급을 갖는 대수이다. 리 대수의 개념에서, 야코비 항등식이 오직 호모토피에 대하여 성립하도록 약화시킨 것이다. (ko)
- In mathematics, in particular abstract algebra and topology, a homotopy Lie algebra (or -algebra) is a generalisation of the concept of a differential graded Lie algebra. To be a little more specific, the Jacobi identity only holds up to homotopy. Therefore, a differential graded Lie algebra can be seen as a homotopy Lie algebra where the Jacobi identity holds on the nose. These homotopy algebras are useful in classifying deformation problems over characteristic 0 in deformation theory because are classified by quasi-isomorphism classes of -algebras. This was later extended to all characteristics by Jonathan Pridham. (en)
|
rdfs:label
|
- Homotopy Lie algebra (en)
- L∞-대수 (ko)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |