dbo:abstract
|
- Die Grand Tour ist ein Verfahren zur explorativen Analyse hochdimensionaler multivariater Daten, das zuerst von beschrieben wurde. Es wurde dann von ihm und weiterentwickelt. In der Grand Tour stellt man die Datenpunkte als Streudiagramm reduziert auf jeweils zwei oder drei Dimensionen dar und dreht die Darstellung nacheinander um jeweils eine der Achsen. Nach dem Durchgang durch die drei Drehungen wird eine der noch nicht untersuchten Dimensionen hinzugenommen, dafür eine bereits betrachtete weggelassen und dieser um die Achsen gedreht und so fort, bis alle Dimensionskombinationen unter allen Betrachtungswinkeln durchlaufen sind. Auf diese Weise bekommt der Betrachter die Punktwolke unter jedem möglichen Winkel und von allen Seiten zu sehen. Der Vorteil dieser Methode ist, dass es schnell möglich ist, sich über die Struktur der Daten ein intuitives Bild zu machen und auch nichtlineare Zusammenhänge zu erkennen, die mit klassischen, schematischen multivariaten Methoden wie Varianzanalyse oder Clusteranalyse übersehen worden wären. Mathematisch gesehen werden die Datenpunkte auf Hyperebenen mit jeweils zwei oder drei Dimensionen projiziert und nacheinander jede mögliche solche Projektion durchlaufen.Die Grand Tour ist deshalb mit dem Verfahren Projection Pursuit verwandt.Dass es ausreicht, viele niedrigdimensionale Projektionen der Daten anzuschauen um die multivariate Verteilung zu verstehen, wird durch den Satz von Cramér-Wold gesichert. (de)
- The Grand Tour is a technique developed by Daniel Asimov in 1985, which is used to explore multivariate statistical data by means of an animation. The animation, or "movie", consists of a series of distinct views of the data as seen from different directions, displayed on a computer screen, that appear to change continuously and that get closer and closer to all possible views. This allows a human- or computer-based evaluation of these views, with the goal of detecting patterns that will convey useful information about the data. This technique is like what many museum visitors do when they encounter a complicated abstract sculpture: They walk around it to view it from all directions, in order to understand it better. The human visual system perceives visual information as a pattern on the retina, which is 2-dimensional. Thus walking around the sculpture to understand it better creates a temporal sequence of 2-dimensional images in the brain. The multivariate data that is the original input for any grand tour visualization is a (finite) set of points in some high-dimensional Euclidean space. This kind of set arises naturally when data is collected. Suppose that for some population of 1000 people, each person is asked to provide their age, height, weight, and number of nose hairs. Thus to each member of the population there is associated an ordered quadruple of numbers. Since n-dimensional Euclidean space is defined as all ordered n-tuples of numbers, this means that the data on 1000 people maybe be thought of as 1000 points in 4-dimensional Euclidean space. The grand tour converts the spatial complexity of the multivariate data set into temporal complexity by using the relatively simple 2-dimensional views of the projected data as the individual frames of the movie. (These are sometimes called "data views".) The projections will ordinarily be chosen so as not to change too fast, which means that the movie of the data will appear continuous to a human observer. A grand tour "method" is an algorithm for assigning a sequence of projections onto (usually) 2-dimensional planes to any given dimension of Euclidean space. This allows any particular multivariate data set to be projected onto that sequence of 2-dimensional planes and thereby displayed on a computer screen one after the other, so that the effect is to create a movie of the data. (Note that, once the data has been projected onto a given 2-plane, then in order to display it on a computer screen, it is necessary to choose the directions in that 2-plane that will correspond to the horizontal and vertical directions on the computer screen. This is typically a minor detail. But the choice of horizontal and vertical directions should ideally be done so as to minimize any unnecessary apparent "spinning" of the 2-dimensional data view.) (en)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4598 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- Die Grand Tour ist ein Verfahren zur explorativen Analyse hochdimensionaler multivariater Daten, das zuerst von beschrieben wurde. Es wurde dann von ihm und weiterentwickelt. In der Grand Tour stellt man die Datenpunkte als Streudiagramm reduziert auf jeweils zwei oder drei Dimensionen dar und dreht die Darstellung nacheinander um jeweils eine der Achsen. Nach dem Durchgang durch die drei Drehungen wird eine der noch nicht untersuchten Dimensionen hinzugenommen, dafür eine bereits betrachtete weggelassen und dieser um die Achsen gedreht und so fort, bis alle Dimensionskombinationen unter allen Betrachtungswinkeln durchlaufen sind. Auf diese Weise bekommt der Betrachter die Punktwolke unter jedem möglichen Winkel und von allen Seiten zu sehen. (de)
- The Grand Tour is a technique developed by Daniel Asimov in 1985, which is used to explore multivariate statistical data by means of an animation. The animation, or "movie", consists of a series of distinct views of the data as seen from different directions, displayed on a computer screen, that appear to change continuously and that get closer and closer to all possible views. This allows a human- or computer-based evaluation of these views, with the goal of detecting patterns that will convey useful information about the data. (en)
|
rdfs:label
|
- Grand Tour (Statistik) (de)
- Grand Tour (data visualisation) (en)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |