An Entity of Type: anatomical structure, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, Gosper's algorithm, due to Bill Gosper, is a procedure for finding sums of hypergeometric terms that are themselves hypergeometric terms. That is: suppose one has a(1) + ... + a(n) = S(n) − S(0), where S(n) is a hypergeometric term (i.e., S(n + 1)/S(n) is a rational function of n); then necessarily a(n) is itself a hypergeometric term, and given the formula for a(n) Gosper's algorithm finds that for S(n).

Property Value
dbo:abstract
  • En matemáticas, el algoritmo de Gosper es un método para encontrar sumas de términos hipergeométricos que son términos hipergeométricos por sí mismos. Esto es: se supone que tenemos a(1) + ... + a(n) = S(n) - S(0), donde S(n) es un término hipergeométrico (i.e., S(n+1)/S(n) es una función racional de n); entonces, necesariamente a(n) es en sí mismo un término hipergeométrico, y, dada la fórmula para a(n), el algoritmo de Gosper lo encuentra para S(n). (es)
  • In mathematics, Gosper's algorithm, due to Bill Gosper, is a procedure for finding sums of hypergeometric terms that are themselves hypergeometric terms. That is: suppose one has a(1) + ... + a(n) = S(n) − S(0), where S(n) is a hypergeometric term (i.e., S(n + 1)/S(n) is a rational function of n); then necessarily a(n) is itself a hypergeometric term, and given the formula for a(n) Gosper's algorithm finds that for S(n). (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 19590493 (xsd:integer)
dbo:wikiPageLength
  • 5291 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1115169928 (xsd:integer)
dbo:wikiPageWikiLink
dbp:cs1Dates
  • y (en)
dbp:date
  • January 2020 (en)
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • En matemáticas, el algoritmo de Gosper es un método para encontrar sumas de términos hipergeométricos que son términos hipergeométricos por sí mismos. Esto es: se supone que tenemos a(1) + ... + a(n) = S(n) - S(0), donde S(n) es un término hipergeométrico (i.e., S(n+1)/S(n) es una función racional de n); entonces, necesariamente a(n) es en sí mismo un término hipergeométrico, y, dada la fórmula para a(n), el algoritmo de Gosper lo encuentra para S(n). (es)
  • In mathematics, Gosper's algorithm, due to Bill Gosper, is a procedure for finding sums of hypergeometric terms that are themselves hypergeometric terms. That is: suppose one has a(1) + ... + a(n) = S(n) − S(0), where S(n) is a hypergeometric term (i.e., S(n + 1)/S(n) is a rational function of n); then necessarily a(n) is itself a hypergeometric term, and given the formula for a(n) Gosper's algorithm finds that for S(n). (en)
rdfs:label
  • Algoritmo de Gosper (es)
  • Gosper's algorithm (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License