In set theory, a foundational relation on a set or proper class lets each nonempty subset admit a relational minimal element. Formally, let (A, R) be a binary relation structure, where A is a class (set or proper class), and R is a binary relation defined on A. Then (A, R) is a foundational relation if any nonempty subset in A has an R-minimal element. In predicate logic, in which denotes the empty set.Here is an R-minimal element in the subset S, since none of its R-predecessors is in S.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is foaf:primaryTopic of |