The Forouhi–Bloomer model is a mathematical formula for the frequency dependence of the complex-valued refractive index. The model can be used to fit the refractive index of amorphous and crystalline semiconductor and dielectric materials at energies near and greater than their optical band gap. The dispersion relation bears the names of Rahim Forouhi and Iris Bloomer, who created the model and interpreted the physical significance of its parameters. The model is aphysical due to its incorrect asymptotic behavior and non-Hermitian character. These shortcomings inspired modified versions of the model as well as development of the Tauc–Lorentz model.
Property | Value |
---|---|
dbo:abstract |
|
dbo:thumbnail | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:depiction | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of |
|
is foaf:primaryTopic of |