An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, it can be shown that every function can be written as the composite of a surjective function followed by an injective function. Factorization systems are a generalization of this situation in category theory.

Property Value
dbo:abstract
  • In mathematics, it can be shown that every function can be written as the composite of a surjective function followed by an injective function. Factorization systems are a generalization of this situation in category theory. (en)
  • 범주론에서 분해계(分解系, 영어: factorization system)는 어떤 범주의 모든 사상을 특별한 모임에 속하는 두 사상의 합성으로 (동형 사상 아래) 표준적으로 분해하는 구조이다. (ko)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 7149012 (xsd:integer)
dbo:wikiPageLength
  • 5423 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1075260866 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, it can be shown that every function can be written as the composite of a surjective function followed by an injective function. Factorization systems are a generalization of this situation in category theory. (en)
  • 범주론에서 분해계(分解系, 영어: factorization system)는 어떤 범주의 모든 사상을 특별한 모임에 속하는 두 사상의 합성으로 (동형 사상 아래) 표준적으로 분해하는 구조이다. (ko)
rdfs:label
  • Factorization system (en)
  • 분해계 (ko)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License