An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In graph theory, a mathematical discipline, a factor-critical graph (or hypomatchable graph) is a graph with n vertices in which every subgraph of n − 1 vertices has a perfect matching. (A perfect matching in a graph is a subset of its edges with the property that each of its vertices is the endpoint of exactly one of the edges in the subset.) A matching that covers all but one vertex of a graph is called a near-perfect matching. So equivalently, a factor-critical graph is a graph in which there are near-perfect matchings that avoid every possible vertex.

Property Value
dbo:abstract
  • In graph theory, a mathematical discipline, a factor-critical graph (or hypomatchable graph) is a graph with n vertices in which every subgraph of n − 1 vertices has a perfect matching. (A perfect matching in a graph is a subset of its edges with the property that each of its vertices is the endpoint of exactly one of the edges in the subset.) A matching that covers all but one vertex of a graph is called a near-perfect matching. So equivalently, a factor-critical graph is a graph in which there are near-perfect matchings that avoid every possible vertex. (en)
  • Фактор-критический граф (или почти сочетаемый граф .) — это граф с n вершинами, в котором каждый подграф с n − 1 вершинами имеет совершенное паросочетание. (Совершенное паросочетание в графе — это подмножество рёбер со свойством, что каждая из вершин графа является конечной вершиной в точности одного ребра из подмножества.) Сочетание, покрывающее все вершины, кроме одной, называется почти совершенным паросочетанием. Таким образом, эквивалентно, фактор-критический граф — это граф, в котором существуют почти совершенные паросочетания, которые не содержат любую из вершин. (ru)
dbo:thumbnail
dbo:wikiPageID
  • 7684634 (xsd:integer)
dbo:wikiPageLength
  • 15720 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1065655054 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In graph theory, a mathematical discipline, a factor-critical graph (or hypomatchable graph) is a graph with n vertices in which every subgraph of n − 1 vertices has a perfect matching. (A perfect matching in a graph is a subset of its edges with the property that each of its vertices is the endpoint of exactly one of the edges in the subset.) A matching that covers all but one vertex of a graph is called a near-perfect matching. So equivalently, a factor-critical graph is a graph in which there are near-perfect matchings that avoid every possible vertex. (en)
  • Фактор-критический граф (или почти сочетаемый граф .) — это граф с n вершинами, в котором каждый подграф с n − 1 вершинами имеет совершенное паросочетание. (Совершенное паросочетание в графе — это подмножество рёбер со свойством, что каждая из вершин графа является конечной вершиной в точности одного ребра из подмножества.) Сочетание, покрывающее все вершины, кроме одной, называется почти совершенным паросочетанием. Таким образом, эквивалентно, фактор-критический граф — это граф, в котором существуют почти совершенные паросочетания, которые не содержат любую из вершин. (ru)
rdfs:label
  • Factor-critical graph (en)
  • Фактор-критический граф (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:properties of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License