An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In category theory, the concept of an element, or a point, generalizes the more usual set theoretic concept of an element of a set to an object of any category. This idea often allows restating of definitions or properties of morphisms (such as monomorphism or product) given by a universal property in more familiar terms, by stating their relation to elements. Some very general theorems, such as Yoneda's lemma and the Mitchell embedding theorem, are of great utility for this, by allowing one to work in a context where these translations are valid. This approach to category theory – in particular the use of the Yoneda lemma in this way – is due to Grothendieck, and is often called the method of the functor of points.

Property Value
dbo:abstract
  • In category theory, the concept of an element, or a point, generalizes the more usual set theoretic concept of an element of a set to an object of any category. This idea often allows restating of definitions or properties of morphisms (such as monomorphism or product) given by a universal property in more familiar terms, by stating their relation to elements. Some very general theorems, such as Yoneda's lemma and the Mitchell embedding theorem, are of great utility for this, by allowing one to work in a context where these translations are valid. This approach to category theory – in particular the use of the Yoneda lemma in this way – is due to Grothendieck, and is often called the method of the functor of points. (en)
  • В теории категорий, понятие элемента (или точки) обобщает обычное понятие элемента множества на объект произвольной категории. Иногда оно позволяет переформулировать свойства морфизмов (например, свойство мономорфизма), которые обычно описываются при помощи универсальных свойств в более привычных терминах действия отображения на элементах. Этот подход к теории категорий (и особенно его использование в лемме Йонеды) был предложен Гротендиком. (ru)
  • 范畴论的元素(英語:element),或点(英語:point),将集合论中集合元素的概念更推广到任何范畴的对象。通常情况下,这一想法重新表述了泛性质态射(如单态射和积)的定义或属性,用更普遍的术语映射其与元素的关系,從而使態射和元素可以互相轉換。米田引理和等一些普遍結論說明此種轉換為何成立。这种范畴论的方法(尤其是對米田引理的運用)通常被称为点函子方法(英語:the method of the functor of points),是由格罗滕迪克提出的。 (zh)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 11494409 (xsd:integer)
dbo:wikiPageLength
  • 6495 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1059970646 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In category theory, the concept of an element, or a point, generalizes the more usual set theoretic concept of an element of a set to an object of any category. This idea often allows restating of definitions or properties of morphisms (such as monomorphism or product) given by a universal property in more familiar terms, by stating their relation to elements. Some very general theorems, such as Yoneda's lemma and the Mitchell embedding theorem, are of great utility for this, by allowing one to work in a context where these translations are valid. This approach to category theory – in particular the use of the Yoneda lemma in this way – is due to Grothendieck, and is often called the method of the functor of points. (en)
  • В теории категорий, понятие элемента (или точки) обобщает обычное понятие элемента множества на объект произвольной категории. Иногда оно позволяет переформулировать свойства морфизмов (например, свойство мономорфизма), которые обычно описываются при помощи универсальных свойств в более привычных терминах действия отображения на элементах. Этот подход к теории категорий (и особенно его использование в лемме Йонеды) был предложен Гротендиком. (ru)
  • 范畴论的元素(英語:element),或点(英語:point),将集合论中集合元素的概念更推广到任何范畴的对象。通常情况下,这一想法重新表述了泛性质态射(如单态射和积)的定义或属性,用更普遍的术语映射其与元素的关系,從而使態射和元素可以互相轉換。米田引理和等一些普遍結論說明此種轉換為何成立。这种范畴论的方法(尤其是對米田引理的運用)通常被称为点函子方法(英語:the method of the functor of points),是由格罗滕迪克提出的。 (zh)
rdfs:label
  • Element (category theory) (en)
  • Элемент (теория категорий) (ru)
  • 元素 (范畴论) (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License