dbo:abstract
|
- In mathematics, the dual module of a left (respectively right) module M over a ring R is the set of module homomorphisms from M to R with the pointwise right (respectively left) module structure. The dual module is typically denoted M∗ or HomR(M, R). If the base ring R is a field, then a dual module is a dual vector space. Every module has a canonical homomorphism to the dual of its dual (called the double dual). A reflexive module is one for which the canonical homomorphism is an isomorphism. A torsionless module is one for which the canonical homomorphism is injective. Example: If is a finite commutative group scheme represented by a Hopf algebra A over a commutative ring k, then the Cartier dual is the Spec of the dual k-module of A. (en)
- En algèbre commutative et plus généralement en théorie des anneaux, la notion de dual d'un module généralise celle de dual d'un espace vectoriel. Le dual d'un module A par rapport à un module B (sur un anneau R) est l'ensemble des homomorphismes de A dans B. Il est noté Hom(A,B). Si le module B n'est pas spécifié, par défaut, on considère qu'il s'agit de l'anneau R. Le dual Hom(A,R) est appelé simplement « dual de A » et noté A*. (fr)
- 선형대수학과 가군 이론에서, 쌍대 가군(雙對加群, 영어: dual module)은 어떤 가군 또는 벡터 공간 위의 선형 범함수들로 구성된 가군 또는 벡터 공간을 말한다. 만약 스칼라환이 가환환이 아닐 경우, 왼쪽 가군의 쌍대 가군은 오른쪽 가군이며, 반대로 오른쪽 가군의 쌍대 가군은 왼쪽 가군이다. 만약 스칼라환이 체일 경우, 쌍대 가군은 보통 쌍대 공간(雙對空間, 영어: dual space)이라고 한다. 기호는 또는 (벡터 공간의 경우) . 쌍대 가군의 개념은 대수적이며, 그 위의 위상을 고려하지 않는다. 이 때문에, 위상 벡터 공간의 경우 보통 연속 쌍대 공간을 대신 사용한다. (ko)
- R-加群Mの双対加群(そうついかぐん、英: dual module)とは数学において、R-加群Mに対して、Mから「R-加群として見たR」への加群準同型全体が、値ごとの演算によって成す新たなR-加群の事である。通常、双対ベクトル空間の例に倣ってあるいはなどと表記される。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 1416 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdfs:comment
|
- En algèbre commutative et plus généralement en théorie des anneaux, la notion de dual d'un module généralise celle de dual d'un espace vectoriel. Le dual d'un module A par rapport à un module B (sur un anneau R) est l'ensemble des homomorphismes de A dans B. Il est noté Hom(A,B). Si le module B n'est pas spécifié, par défaut, on considère qu'il s'agit de l'anneau R. Le dual Hom(A,R) est appelé simplement « dual de A » et noté A*. (fr)
- 선형대수학과 가군 이론에서, 쌍대 가군(雙對加群, 영어: dual module)은 어떤 가군 또는 벡터 공간 위의 선형 범함수들로 구성된 가군 또는 벡터 공간을 말한다. 만약 스칼라환이 가환환이 아닐 경우, 왼쪽 가군의 쌍대 가군은 오른쪽 가군이며, 반대로 오른쪽 가군의 쌍대 가군은 왼쪽 가군이다. 만약 스칼라환이 체일 경우, 쌍대 가군은 보통 쌍대 공간(雙對空間, 영어: dual space)이라고 한다. 기호는 또는 (벡터 공간의 경우) . 쌍대 가군의 개념은 대수적이며, 그 위의 위상을 고려하지 않는다. 이 때문에, 위상 벡터 공간의 경우 보통 연속 쌍대 공간을 대신 사용한다. (ko)
- R-加群Mの双対加群(そうついかぐん、英: dual module)とは数学において、R-加群Mに対して、Mから「R-加群として見たR」への加群準同型全体が、値ごとの演算によって成す新たなR-加群の事である。通常、双対ベクトル空間の例に倣ってあるいはなどと表記される。 (ja)
- In mathematics, the dual module of a left (respectively right) module M over a ring R is the set of module homomorphisms from M to R with the pointwise right (respectively left) module structure. The dual module is typically denoted M∗ or HomR(M, R). If the base ring R is a field, then a dual module is a dual vector space. Every module has a canonical homomorphism to the dual of its dual (called the double dual). A reflexive module is one for which the canonical homomorphism is an isomorphism. A torsionless module is one for which the canonical homomorphism is injective. (en)
|
rdfs:label
|
- Dual module (en)
- Dual d'un module (fr)
- 쌍대 가군 (ko)
- 双対加群 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |