An Entity of Type: WikicatEllipticCurves, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the doubling-oriented Doche–Icart–Kohel curve is a form in which an elliptic curve can be written. It is a special case of Weierstrass form and it is also important in elliptic-curve cryptography because the doubling speeds up considerably (computing as composition of 2-isogeny and its dual). It has been introduced by Christophe Doche, Thomas Icart, and David R. Kohel in Efficient Scalar Multiplication by Isogeny Decompositions.

Property Value
dbo:abstract
  • In mathematics, the doubling-oriented Doche–Icart–Kohel curve is a form in which an elliptic curve can be written. It is a special case of Weierstrass form and it is also important in elliptic-curve cryptography because the doubling speeds up considerably (computing as composition of 2-isogeny and its dual). It has been introduced by Christophe Doche, Thomas Icart, and David R. Kohel in Efficient Scalar Multiplication by Isogeny Decompositions. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 25741083 (xsd:integer)
dbo:wikiPageLength
  • 8098 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 976590672 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, the doubling-oriented Doche–Icart–Kohel curve is a form in which an elliptic curve can be written. It is a special case of Weierstrass form and it is also important in elliptic-curve cryptography because the doubling speeds up considerably (computing as composition of 2-isogeny and its dual). It has been introduced by Christophe Doche, Thomas Icart, and David R. Kohel in Efficient Scalar Multiplication by Isogeny Decompositions. (en)
rdfs:label
  • Doubling-oriented Doche–Icart–Kohel curve (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License