An Entity of Type: Function113783816, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the discrete q-Hermite polynomials are two closely related families hn(x;q) and ĥn(x;q) of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Al-Salam and Carlitz. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw give a detailed list of their properties. hn(x;q) is also called discrete q-Hermite I polynomials and ĥn(x;q) is also called discrete q-Hermite II polynomials.

Property Value
dbo:abstract
  • In mathematics, the discrete q-Hermite polynomials are two closely related families hn(x;q) and ĥn(x;q) of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Al-Salam and Carlitz. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw give a detailed list of their properties. hn(x;q) is also called discrete q-Hermite I polynomials and ĥn(x;q) is also called discrete q-Hermite II polynomials. (en)
  • 离散q-埃尔米特多项式是以超几何函数定义的正交多项式 (zh)
dbo:wikiPageID
  • 32848697 (xsd:integer)
dbo:wikiPageLength
  • 3387 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1091207514 (xsd:integer)
dbo:wikiPageWikiLink
dbp:doi
  • 10.100700 (xsd:double)
dbp:first
  • Peter A. (en)
  • René F. (en)
  • Roderick S. C. (en)
  • Roelof (en)
  • Tom H. (en)
dbp:id
  • 18 (xsd:integer)
dbp:isbn
  • 978 (xsd:integer)
dbp:last
  • Wong (en)
  • Koekoek (en)
  • Koornwinder (en)
  • Lesky (en)
  • Swarttouw (en)
dbp:loc
  • 14 (xsd:integer)
dbp:location
  • Berlin, New York (en)
dbp:mr
  • 2656096 (xsd:integer)
dbp:publisher
dbp:series
  • Springer Monographs in Mathematics (en)
dbp:title
  • Hypergeometric orthogonal polynomials and their q-analogues (en)
  • Chapter 18 Orthogonal Polynomials (en)
dbp:wikiPageUsesTemplate
dbp:year
  • 2010 (xsd:integer)
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, the discrete q-Hermite polynomials are two closely related families hn(x;q) and ĥn(x;q) of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Al-Salam and Carlitz. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw give a detailed list of their properties. hn(x;q) is also called discrete q-Hermite I polynomials and ĥn(x;q) is also called discrete q-Hermite II polynomials. (en)
  • 离散q-埃尔米特多项式是以超几何函数定义的正交多项式 (zh)
rdfs:label
  • Discrete q-Hermite polynomials (en)
  • 离散q-埃尔米特I多项式 (zh)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License