dbo:abstract
|
- In mathematics, the discrete q-Hermite polynomials are two closely related families hn(x;q) and ĥn(x;q) of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Al-Salam and Carlitz. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw give a detailed list of their properties. hn(x;q) is also called discrete q-Hermite I polynomials and ĥn(x;q) is also called discrete q-Hermite II polynomials. (en)
- 离散q-埃尔米特多项式是以超几何函数定义的正交多项式 (zh)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 3387 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:doi
| |
dbp:first
|
- Peter A. (en)
- René F. (en)
- Roderick S. C. (en)
- Roelof (en)
- Tom H. (en)
|
dbp:id
| |
dbp:isbn
| |
dbp:last
|
- Wong (en)
- Koekoek (en)
- Koornwinder (en)
- Lesky (en)
- Swarttouw (en)
|
dbp:loc
| |
dbp:location
| |
dbp:mr
| |
dbp:publisher
| |
dbp:series
|
- Springer Monographs in Mathematics (en)
|
dbp:title
|
- Hypergeometric orthogonal polynomials and their q-analogues (en)
- Chapter 18 Orthogonal Polynomials (en)
|
dbp:wikiPageUsesTemplate
| |
dbp:year
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, the discrete q-Hermite polynomials are two closely related families hn(x;q) and ĥn(x;q) of basic hypergeometric orthogonal polynomials in the basic Askey scheme, introduced by Al-Salam and Carlitz. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw give a detailed list of their properties. hn(x;q) is also called discrete q-Hermite I polynomials and ĥn(x;q) is also called discrete q-Hermite II polynomials. (en)
- 离散q-埃尔米特多项式是以超几何函数定义的正交多项式 (zh)
|
rdfs:label
|
- Discrete q-Hermite polynomials (en)
- 离散q-埃尔米特I多项式 (zh)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |