An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In graph theory, Conway's 99-graph problem is an unsolved problem asking whether there exists an undirected graph with 99 vertices, in which each two adjacent vertices have exactly one common neighbor, and in which each two non-adjacent vertices have exactly two common neighbors. Equivalently, every edge should be part of a unique triangle and every non-adjacent pair should be one of the two diagonals of a unique 4-cycle. John Horton Conway offered a $1000 prize for its solution.

Property Value
dbo:abstract
  • In graph theory, Conway's 99-graph problem is an unsolved problem asking whether there exists an undirected graph with 99 vertices, in which each two adjacent vertices have exactly one common neighbor, and in which each two non-adjacent vertices have exactly two common neighbors. Equivalently, every edge should be part of a unique triangle and every non-adjacent pair should be one of the two diagonals of a unique 4-cycle. John Horton Conway offered a $1000 prize for its solution. (en)
  • コンウェイの99グラフ問題(コンウェイの99グラフもんだい、英: Conway's 99-graph problem)はグラフ理論の未解決問題の一つであり、次の性質を持つ99個の頂点からなる無向グラフが存在するかどうかを問う。 任意の隣接する2頂点がちょうど1個の共通の隣接頂点を持ち、任意の隣接しない2頂点がちょうど2個の共通の隣接頂点を持つ。同じことだが、任意の辺がただ一つの三角形の1辺となり、任意の隣接しない2頂点がただ一つの4-閉路の向かい合う2頂点となる。 ジョン・ホートン・コンウェイはこの問題の解決に対して1000ドルの賞金を提示している。 (ja)
  • Задача Конвея о 99-вершинном графе — нерешённая задача, которая спрашивает, существует ли неориентированный граф с 99 вершинами, в которых каждые две смежные вершины имеют в точности одного общего соседа и в которых две несмежные вершины имеют в точности два общих соседа. Эквивалентно, любое ребро должно быть частью единственного треугольника, а любая пара несмежных вершин должна быть на диагонали единственного 4-цикла. Джон Хортон Конвей объявил о призе в 1000 долларов тому, кто решит эту проблему. (ru)
dbo:thumbnail
dbo:wikiPageID
  • 59939359 (xsd:integer)
dbo:wikiPageLength
  • 6725 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1025592753 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In graph theory, Conway's 99-graph problem is an unsolved problem asking whether there exists an undirected graph with 99 vertices, in which each two adjacent vertices have exactly one common neighbor, and in which each two non-adjacent vertices have exactly two common neighbors. Equivalently, every edge should be part of a unique triangle and every non-adjacent pair should be one of the two diagonals of a unique 4-cycle. John Horton Conway offered a $1000 prize for its solution. (en)
  • コンウェイの99グラフ問題(コンウェイの99グラフもんだい、英: Conway's 99-graph problem)はグラフ理論の未解決問題の一つであり、次の性質を持つ99個の頂点からなる無向グラフが存在するかどうかを問う。 任意の隣接する2頂点がちょうど1個の共通の隣接頂点を持ち、任意の隣接しない2頂点がちょうど2個の共通の隣接頂点を持つ。同じことだが、任意の辺がただ一つの三角形の1辺となり、任意の隣接しない2頂点がただ一つの4-閉路の向かい合う2頂点となる。 ジョン・ホートン・コンウェイはこの問題の解決に対して1000ドルの賞金を提示している。 (ja)
  • Задача Конвея о 99-вершинном графе — нерешённая задача, которая спрашивает, существует ли неориентированный граф с 99 вершинами, в которых каждые две смежные вершины имеют в точности одного общего соседа и в которых две несмежные вершины имеют в точности два общих соседа. Эквивалентно, любое ребро должно быть частью единственного треугольника, а любая пара несмежных вершин должна быть на диагонали единственного 4-цикла. Джон Хортон Конвей объявил о призе в 1000 долларов тому, кто решит эту проблему. (ru)
rdfs:label
  • Conway's 99-graph problem (en)
  • コンウェイの99グラフ問題 (ja)
  • Задача Конвея о 99-вершинном графе (ru)
  • Задача Конвея про 99-вершинний граф (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License