An Entity of Type: Person100007846, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The contact process is a stochastic process used to model population growth on the set of sites of a graph in which occupied sites become vacant at a constant rate, while vacant sites become occupied at a rate proportional to the number of occupied neighboring sites. Therefore, if we denote by the proportionality constant, each site remains occupied for a random time period which is exponentially distributed parameter 1 and places descendants at every vacant neighboring site at times of events of a Poisson process parameter during this period. All processes are independent of one another and of the random period of time sites remains occupied. The contact process can also be interpreted as a model for the spread of an infection by thinking of particles as a bacterium spreading over ind

Property Value
dbo:abstract
  • The contact process is a stochastic process used to model population growth on the set of sites of a graph in which occupied sites become vacant at a constant rate, while vacant sites become occupied at a rate proportional to the number of occupied neighboring sites. Therefore, if we denote by the proportionality constant, each site remains occupied for a random time period which is exponentially distributed parameter 1 and places descendants at every vacant neighboring site at times of events of a Poisson process parameter during this period. All processes are independent of one another and of the random period of time sites remains occupied. The contact process can also be interpreted as a model for the spread of an infection by thinking of particles as a bacterium spreading over individuals that are positioned at the sites of , occupied sites correspond to infected individuals, whereas vacant correspond to healthy ones. The main quantity of interest is the number of particles in the process, say , in the first interpretation, which corresponds to the number of infected sites in the second one. Therefore, the process survives whenever the number of particles is positive for all times, which corresponds to the case that there are always infected individuals in the second one. For any infinite graph there exists a positive and finite critical value so that if then survival of the process starting from a finite number of particles occurs with positive probability, while if their extinction is almost certain. Note that by reductio ad absurdum and the infinite monkey theorem, survival of the process is equivalent to , as , whereas extinction is equivalent to , as , and therefore, it is natural to ask about the rate at which when the process survives. (en)
  • O processo de contato é um modelo de um sistema de partículas em interação. É um processo de Markov de tempo contínuo com espaço de estados , em que é um grafo finito ou contável, usualmente . O processo é usualmente interpretado como um modelo para a propagação de uma infeção: se o estado do processo a qualquer tempo dado for , então um local em está "infectado" se e "não infectado" se . Locais infectados se tornam não infectados a uma taxa constante, enquanto locais não infectados se tornam infectados a uma taxa proporcional ao número de vizinhos infectados. Pode-se generalizar o espaço de estados a , o que é chamado de processo de contato multitipo. Este representa um modelo em que mais de um tipo de infecção está competindo por espaço. (pt)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 5097569 (xsd:integer)
dbo:wikiPageLength
  • 8984 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1095664568 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • O processo de contato é um modelo de um sistema de partículas em interação. É um processo de Markov de tempo contínuo com espaço de estados , em que é um grafo finito ou contável, usualmente . O processo é usualmente interpretado como um modelo para a propagação de uma infeção: se o estado do processo a qualquer tempo dado for , então um local em está "infectado" se e "não infectado" se . Locais infectados se tornam não infectados a uma taxa constante, enquanto locais não infectados se tornam infectados a uma taxa proporcional ao número de vizinhos infectados. Pode-se generalizar o espaço de estados a , o que é chamado de processo de contato multitipo. Este representa um modelo em que mais de um tipo de infecção está competindo por espaço. (pt)
  • The contact process is a stochastic process used to model population growth on the set of sites of a graph in which occupied sites become vacant at a constant rate, while vacant sites become occupied at a rate proportional to the number of occupied neighboring sites. Therefore, if we denote by the proportionality constant, each site remains occupied for a random time period which is exponentially distributed parameter 1 and places descendants at every vacant neighboring site at times of events of a Poisson process parameter during this period. All processes are independent of one another and of the random period of time sites remains occupied. The contact process can also be interpreted as a model for the spread of an infection by thinking of particles as a bacterium spreading over ind (en)
rdfs:label
  • Contact process (mathematics) (en)
  • Processo de contato (matemática) (pt)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License