Connexive logic names one class of alternative, or non-classical, logics designed to exclude the paradoxes of material implication. The characteristic that separates connexive logic from other non-classical logics is its acceptance of Aristotle's thesis, i.e. the formula, * ~(~p → p) as a logical truth. Aristotle's thesis asserts that no statement follows from its own denial. Stronger connexive logics also accept Boethius' thesis, * ((p → q) → ~(p → ~q)) which states that if a statement implies one thing, it does not imply its opposite.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of |
|
is foaf:primaryTopic of |