dbo:abstract
|
- The complex wavelet transform (CWT) is a complex-valued extension to the standard discrete wavelet transform (DWT). It is a two-dimensional wavelet transform which provides multiresolution, sparse representation, and useful characterization of the structure of an image. Further, it purveys a high degree of shift-invariance in its magnitude, which was investigated in. However, a drawback to this transform is that it exhibits (where is the dimension of the signal being transformed) redundancy compared to a separable (DWT). The use of complex wavelets in image processing was originally set up in 1995 by J.M. Lina and L. Gagnon [1] in the framework of the Daubechies orthogonal filters banks [2]. It was then generalized in 1997 by of Cambridge University. In the area of computer vision, by exploiting the concept of visual contexts, one can quickly focus on candidate regions, where objects of interest may be found, and then compute additional features through the CWT for those regions only. These additional features, while not necessary for global regions, are useful in accurate detection and recognition of smaller objects. Similarly, the CWT may be applied to detect the activated voxels of cortex and additionally the temporal independent component analysis (tICA) may be utilized to extract the underlying independent sources whose number is determined by Bayesian information criterion [3]. (en)
- 複小波變換是針對標準離散傅立葉轉換在複數上的延伸形式。事實上,複小波變換是一個二維的小波轉換,並且可以提供多尺度、有用的影像結構特性的分析。此外,他也具備了振幅不會隨著平移而改變的特性。然而,這種轉換具備了一個缺點,就是相對於原本的離散傅立葉轉換,會有多餘的 (這裡的是指原始被傳遞訊號的維度)維度存在。 一般而言,複小波變換最早被使用是在1995年,由J.M.Lina和L. Gagnon,基於Daubechies正交濾波器的架構,用以進行影像處理。並於1997年被劍橋大學的Nick Kingsbury教授歸納出一個較為一般性的形式。 在電腦視覺的領域中,人們可以藉由利用同時考慮區域影像的概念,快速的將目標集中存在人們有興趣的物件之區域上。然後,再使用複小波變換去計算隱含在圖像中額外的特性,這些特性對於整張圖像中或許是不必要的,但是對於精確的偵測及辨認小物件是有用的。同理,複小波變換亦可被應用在三維空間中,加上獨立成分分析,可以藉由貝斯資訊標準[1]萃取出其中獨立的成分。 (zh)
- 複小波轉換或复小波转换(Complex Wavelet Transform)是一個離散小波轉換(DWT)的複數形式延伸。 它是一個二维小波變换,它提供多分辨率,稀疏表示,以及图像结构的有益特性。另外,他還提供其幅度的高度移位不变性。 在圖像處理中使用複小波最初始於1995年,由 J.M. Lina 和 L. Gagnon[1]用多貝西正交濾波器銀行的框架[2]。然後劍橋大學剑桥大学教授 歸納於1997年。在計算機視覺的區域中,通過利用可見的內文的概念,可以快速地集中於候選區域,其中可以發覺到有興趣的項目,然後通過複小波轉換計算那些被選定的特定區域。這些附加且非必要的特徵,在精確的檢測和識別更小的物體非常有用。同樣地,複小波轉換可以應用於類似檢測皮質的活化素,另外的時間獨立成分分析(TICA)可用於提取底層獨立來源,其數量由貝葉斯信息準則[3]確定。然而,複小波轉換的一個缺點是這種變換是,相較於可分離的離散小波轉換(separable DWT),它顯示出(其中d是被轉換信號的維度)的冗余(redundancy)。 複小波轉換的主要概念是,基於在離散小波轉換的複數函式空間上投影的複數投影,而做的複數小波轉換。而他的優點主要是: 1. 可以解決一些離散小波轉換的缺陷2. 可控制的多餘項-可以控制的多餘項可以用來平衡轉向的敏感度以及轉換的冗餘。3. 可修改性(使用彈性)-可以創建複雜的双密度離散小波轉換:一個移位不敏感的,定向的,在M維空間裡面有低冗余(3M-1)/(2M-1)的複數小波轉換。 (zh)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 6964 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:bot
| |
dbp:date
| |
dbp:fixAttempted
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- 複小波變換是針對標準離散傅立葉轉換在複數上的延伸形式。事實上,複小波變換是一個二維的小波轉換,並且可以提供多尺度、有用的影像結構特性的分析。此外,他也具備了振幅不會隨著平移而改變的特性。然而,這種轉換具備了一個缺點,就是相對於原本的離散傅立葉轉換,會有多餘的 (這裡的是指原始被傳遞訊號的維度)維度存在。 一般而言,複小波變換最早被使用是在1995年,由J.M.Lina和L. Gagnon,基於Daubechies正交濾波器的架構,用以進行影像處理。並於1997年被劍橋大學的Nick Kingsbury教授歸納出一個較為一般性的形式。 在電腦視覺的領域中,人們可以藉由利用同時考慮區域影像的概念,快速的將目標集中存在人們有興趣的物件之區域上。然後,再使用複小波變換去計算隱含在圖像中額外的特性,這些特性對於整張圖像中或許是不必要的,但是對於精確的偵測及辨認小物件是有用的。同理,複小波變換亦可被應用在三維空間中,加上獨立成分分析,可以藉由貝斯資訊標準[1]萃取出其中獨立的成分。 (zh)
- The complex wavelet transform (CWT) is a complex-valued extension to the standard discrete wavelet transform (DWT). It is a two-dimensional wavelet transform which provides multiresolution, sparse representation, and useful characterization of the structure of an image. Further, it purveys a high degree of shift-invariance in its magnitude, which was investigated in. However, a drawback to this transform is that it exhibits (where is the dimension of the signal being transformed) redundancy compared to a separable (DWT). (en)
- 複小波轉換或复小波转换(Complex Wavelet Transform)是一個離散小波轉換(DWT)的複數形式延伸。 它是一個二维小波變换,它提供多分辨率,稀疏表示,以及图像结构的有益特性。另外,他還提供其幅度的高度移位不变性。 在圖像處理中使用複小波最初始於1995年,由 J.M. Lina 和 L. Gagnon[1]用多貝西正交濾波器銀行的框架[2]。然後劍橋大學剑桥大学教授 歸納於1997年。在計算機視覺的區域中,通過利用可見的內文的概念,可以快速地集中於候選區域,其中可以發覺到有興趣的項目,然後通過複小波轉換計算那些被選定的特定區域。這些附加且非必要的特徵,在精確的檢測和識別更小的物體非常有用。同樣地,複小波轉換可以應用於類似檢測皮質的活化素,另外的時間獨立成分分析(TICA)可用於提取底層獨立來源,其數量由貝葉斯信息準則[3]確定。然而,複小波轉換的一個缺點是這種變換是,相較於可分離的離散小波轉換(separable DWT),它顯示出(其中d是被轉換信號的維度)的冗余(redundancy)。 複小波轉換的主要概念是,基於在離散小波轉換的複數函式空間上投影的複數投影,而做的複數小波轉換。而他的優點主要是: (zh)
|
rdfs:label
|
- Complex wavelet transform (en)
- 複小波變換 (zh)
- 複小波轉換 (zh)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |