An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, especially in the area of algebra known as group theory, a complement of a subgroup H in a group G is a subgroup K of G such that Equivalently, every element of G has a unique expression as a product hk where h ∈ H and k ∈ K. This relation is symmetrical: if K is a complement of H, then H is a complement of K. Neither H nor K need be a normal subgroup of G.

Property Value
dbo:abstract
  • In mathematics, especially in the area of algebra known as group theory, a complement of a subgroup H in a group G is a subgroup K of G such that Equivalently, every element of G has a unique expression as a product hk where h ∈ H and k ∈ K. This relation is symmetrical: if K is a complement of H, then H is a complement of K. Neither H nor K need be a normal subgroup of G. (en)
  • En mathématiques, et plus particulièrement en théorie des groupes, on dit qu'un complément d'un sous-groupe H dans un groupe G est un autre sous-groupe K de G tel que les deux conditions suivantes sont satisfaites : ; (où 1 désigne le sous-groupe de G réduit à l'élément neutre). (fr)
  • In algebra, e in particolare in teoria dei gruppi, un complemento di un sottogruppo di un gruppo è un sottogruppo di tale che * * Questo equivale a dire che ogni elemento di ha un'espressione unica come prodotto dove e . Né né devono necessariamente essere sottogruppi normali di . (it)
dbo:wikiPageID
  • 11436087 (xsd:integer)
dbo:wikiPageLength
  • 2962 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1072646899 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, especially in the area of algebra known as group theory, a complement of a subgroup H in a group G is a subgroup K of G such that Equivalently, every element of G has a unique expression as a product hk where h ∈ H and k ∈ K. This relation is symmetrical: if K is a complement of H, then H is a complement of K. Neither H nor K need be a normal subgroup of G. (en)
  • En mathématiques, et plus particulièrement en théorie des groupes, on dit qu'un complément d'un sous-groupe H dans un groupe G est un autre sous-groupe K de G tel que les deux conditions suivantes sont satisfaites : ; (où 1 désigne le sous-groupe de G réduit à l'élément neutre). (fr)
  • In algebra, e in particolare in teoria dei gruppi, un complemento di un sottogruppo di un gruppo è un sottogruppo di tale che * * Questo equivale a dire che ogni elemento di ha un'espressione unica come prodotto dove e . Né né devono necessariamente essere sottogruppi normali di . (it)
rdfs:label
  • Complement (group theory) (en)
  • Complément d'un sous-groupe (fr)
  • Complemento (teoria dei gruppi) (it)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License