An Entity of Type: Surface104362025, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics and, in particular, differential geometry a circular surface is the image of a map ƒ : I × S1 → R3, where I ⊂ R is an open interval and S1 is the unit circle, defined by where γ, u, v : I → R3 and r : I → R>0, when R>0 := { x ∈ R : x > 0 }. Moreover, it is usually assumed that u · u = v · v = 1 and u · v = 0, where dot denotes the canonical scalar product on R3, i.e. u and v are unit length and mutually perpendicular. The map γ : I → R3 is called the base curve for the circular surface and the two maps u, v : I → R3 are called the direction frame for the circular surface. For a fixed t0 ∈ I the image of ƒ(t0, θ) is called a generating circle of the circular surface.

Property Value
dbo:abstract
  • In mathematics and, in particular, differential geometry a circular surface is the image of a map ƒ : I × S1 → R3, where I ⊂ R is an open interval and S1 is the unit circle, defined by where γ, u, v : I → R3 and r : I → R>0, when R>0 := { x ∈ R : x > 0 }. Moreover, it is usually assumed that u · u = v · v = 1 and u · v = 0, where dot denotes the canonical scalar product on R3, i.e. u and v are unit length and mutually perpendicular. The map γ : I → R3 is called the base curve for the circular surface and the two maps u, v : I → R3 are called the direction frame for the circular surface. For a fixed t0 ∈ I the image of ƒ(t0, θ) is called a generating circle of the circular surface. Circular surfaces are an analogue of ruled surfaces. In the case of circular surfaces the generators are circles; called the generating circles. In the case of ruled surface the generators are straight lines; called rulings. (en)
dbo:wikiPageID
  • 24473645 (xsd:integer)
dbo:wikiPageLength
  • 1861 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 868848292 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics and, in particular, differential geometry a circular surface is the image of a map ƒ : I × S1 → R3, where I ⊂ R is an open interval and S1 is the unit circle, defined by where γ, u, v : I → R3 and r : I → R>0, when R>0 := { x ∈ R : x > 0 }. Moreover, it is usually assumed that u · u = v · v = 1 and u · v = 0, where dot denotes the canonical scalar product on R3, i.e. u and v are unit length and mutually perpendicular. The map γ : I → R3 is called the base curve for the circular surface and the two maps u, v : I → R3 are called the direction frame for the circular surface. For a fixed t0 ∈ I the image of ƒ(t0, θ) is called a generating circle of the circular surface. (en)
rdfs:label
  • Circular surface (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License