An Entity of Type: Circle113873502, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A circle of a sphere is a circle that lies on a sphere. Such a circle can be formed as the intersection of a sphere and a plane, or of two spheres. Circles of a sphere are the spherical geometry analogs of generalised circles in Euclidean space. A circle on a sphere whose plane passes through the center of the sphere is called a great circle, analogous to a Euclidean straight line; otherwise it is a small circle, analogous to a Euclidean circle. Circles of a sphere have radius less than or equal to the sphere radius, with equality when the circle is a great circle.

Property Value
dbo:abstract
  • A circle of a sphere is a circle that lies on a sphere. Such a circle can be formed as the intersection of a sphere and a plane, or of two spheres. Circles of a sphere are the spherical geometry analogs of generalised circles in Euclidean space. A circle on a sphere whose plane passes through the center of the sphere is called a great circle, analogous to a Euclidean straight line; otherwise it is a small circle, analogous to a Euclidean circle. Circles of a sphere have radius less than or equal to the sphere radius, with equality when the circle is a great circle. A circle of a sphere can also be characterized as the locus of points on the sphere at uniform distance from a given center point, or as a spherical curve of constant curvature. (en)
  • Окружность на сфере получается при пересечении сферы с плоскостью. Если плоскость проходит через центр сферы (то есть является диаметральной плоскостью), то получившаяся окружность будет иметь максимальный возможный радиус. Такая окружность называется большой окружностью (иногда большим кругом). Если пересекающая плоскость не проходит через центр, то получившаяся окружность называется малой окружностью. В сферической геометрии окружности на сфере являются аналогом окружностей в плоской геометрии, при этом большие окружности являются аналогом прямых. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 349704 (xsd:integer)
dbo:wikiPageLength
  • 5802 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1120233036 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • Окружность на сфере получается при пересечении сферы с плоскостью. Если плоскость проходит через центр сферы (то есть является диаметральной плоскостью), то получившаяся окружность будет иметь максимальный возможный радиус. Такая окружность называется большой окружностью (иногда большим кругом). Если пересекающая плоскость не проходит через центр, то получившаяся окружность называется малой окружностью. В сферической геометрии окружности на сфере являются аналогом окружностей в плоской геометрии, при этом большие окружности являются аналогом прямых. (ru)
  • A circle of a sphere is a circle that lies on a sphere. Such a circle can be formed as the intersection of a sphere and a plane, or of two spheres. Circles of a sphere are the spherical geometry analogs of generalised circles in Euclidean space. A circle on a sphere whose plane passes through the center of the sphere is called a great circle, analogous to a Euclidean straight line; otherwise it is a small circle, analogous to a Euclidean circle. Circles of a sphere have radius less than or equal to the sphere radius, with equality when the circle is a great circle. (en)
rdfs:label
  • Circle of a sphere (en)
  • Cercle d'une sphère (fr)
  • Окружность на сфере (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License