Cellular deconvolution (also referred to as cell type composition or cell proportion estimation) refers to computational techniques aiming at estimating the proportions of different cell types in samples collected from a tissue. For example, samples collected from the human brain are a mixture of various neuronal and glial cell types (e.g. microglia and astrocytes) in different proportions, where each cell type has a diverse gene expression profile. Since most high-throughput technologies use bulk samples and measure the aggregated levels of molecular information (e.g. expression levels of genes) for all cells in a sample, the measured values would be an aggregate of the values pertaining to the expression landscape of different cell types. Therefore, many downstream analyses such as migh
Property | Value |
---|---|
dbo:abstract |
|
dbo:thumbnail | |
dbo:wikiPageExternalLink |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink |
|
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:depiction | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |