Browse using
OpenLink Faceted Browser
OpenLink Structured Data Editor
LodLive Browser
Formats
RDF:
N-Triples
N3
Turtle
JSON
XML
OData:
Atom
JSON
Microdata:
JSON
HTML
Embedded:
JSON
Turtle
Other:
CSV
JSON-LD
Faceted Browser
Sparql Endpoint
About:
Topology of function spaces
An Entity of Type:
Concept
,
from Named Graph:
http://dbpedia.org
,
within Data Space:
dbpedia.org
Property
Value
dbo:
wikiPageID
2120027
(xsd:integer)
dbo:
wikiPageRevisionID
975666215
(xsd:integer)
dbp:
wikiPageUsesTemplate
dbt
:Commons_category
rdf:
type
skos
:Concept
rdfs:
label
Topology of function spaces
(en)
skos:
broader
dbc
:Functional_analysis
dbc
:General_topology
skos:
prefLabel
Topology of function spaces
(en)
prov:
wasDerivedFrom
wikipedia-en
:Category:Topology_of_function_spaces?oldid=975666215&ns=14
is
dbo:
wikiPageWikiLink
of
dbr
:Epi-convergence
dbr
:Compact-open_topology
dbr
:Operator_topologies
dbr
:Compact_convergence
dbr
:Function_space
dbr
:Topological_vector_space
dbr
:Topologies_on_spaces_of_linear_maps
dbr
:Weak_topology
dbr
:Dual_topology
dbr
:Pointwise_convergence
dbr
:Uniform_convergence
dbr
:Normal_family
dbr
:Arzelà–Ascoli_theorem
dbr
:Support_(mathematics)
dbr
:Polar_topology
dbr
:Fredholm_kernel
dbr
:Strong_operator_topology
dbr
:Uniform_limit_theorem
dbr
:Weak_operator_topology
dbr
:Ultraweak_topology
dbr
:Ultrastrong_topology
dbr
:Vague_topology
dbr
:Strong_dual_space
is
dcterms:
subject
of
dbr
:Epi-convergence
dbr
:Compact-open_topology
dbr
:Operator_topologies
dbr
:Compact_convergence
dbr
:Function_space
dbr
:Topological_vector_space
dbr
:Topologies_on_spaces_of_linear_maps
dbr
:Weak_topology
dbr
:Dual_topology
dbr
:Pointwise_convergence
dbr
:Uniform_convergence
dbr
:Normal_family
dbr
:Arzelà–Ascoli_theorem
dbr
:Support_(mathematics)
dbr
:Polar_topology
dbr
:Fredholm_kernel
dbr
:Strong_operator_topology
dbr
:Uniform_limit_theorem
dbr
:Weak_operator_topology
dbr
:Ultraweak_topology
dbr
:Ultrastrong_topology
dbr
:Vague_topology
dbr
:Strong_dual_space
This content was extracted from
Wikipedia
and is licensed under the
Creative Commons Attribution-ShareAlike 3.0 Unported License