An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In algebraic geometry, Behrend's trace formula is a generalization of the Grothendieck–Lefschetz trace formula to a smooth algebraic stack over a finite field, conjectured in 1993 and proven in 2003 by Kai Behrend. Unlike the classical one, the formula counts points in the "stacky way"; it takes into account the presence of nontrivial automorphisms. Pierre Deligne found an example that shows the formula may be interpreted as a sort of the Selberg trace formula.

Property Value
dbo:abstract
  • In algebraic geometry, Behrend's trace formula is a generalization of the Grothendieck–Lefschetz trace formula to a smooth algebraic stack over a finite field, conjectured in 1993 and proven in 2003 by Kai Behrend. Unlike the classical one, the formula counts points in the "stacky way"; it takes into account the presence of nontrivial automorphisms. The desire for the formula comes from the fact that it applies to the moduli stack of principal bundles on a curve over a finite field (in some instances indirectly, via the Harder–Narasimhan stratification, as the moduli stack is not of finite type.) See the moduli stack of principal bundles and references therein for the precise formulation in this case. Pierre Deligne found an example that shows the formula may be interpreted as a sort of the Selberg trace formula. A proof of the formula in the context of the six operations formalism developed by Yves Laszlo and Martin Olsson is given by Shenghao Sun. (en)
dbo:wikiPageID
  • 41791807 (xsd:integer)
dbo:wikiPageLength
  • 6195 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1091122203 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • In algebraic geometry, Behrend's trace formula is a generalization of the Grothendieck–Lefschetz trace formula to a smooth algebraic stack over a finite field, conjectured in 1993 and proven in 2003 by Kai Behrend. Unlike the classical one, the formula counts points in the "stacky way"; it takes into account the presence of nontrivial automorphisms. Pierre Deligne found an example that shows the formula may be interpreted as a sort of the Selberg trace formula. (en)
rdfs:label
  • Behrend's trace formula (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License