dbo:abstract
|
- In graph theory, a branch of mathematics, an apex graph is a graph that can be made planar by the removal of a single vertex. The deleted vertex is called an apex of the graph. It is an apex, not the apex because an apex graph may have more than one apex; for example, in the minimal nonplanar graphs K5 or K3,3, every vertex is an apex. The apex graphs include graphs that are themselves planar, in which case again every vertex is an apex. The null graph is also counted as an apex graph even though it has no vertex to remove. Apex graphs are closed under the operation of taking minors and play a role in several other aspects of graph minor theory: linkless embedding, Hadwiger's conjecture, YΔY-reducible graphs, and relations between treewidth and graph diameter. (en)
- En teoría de grafos, una rama de las matemáticas, un grafo de ápice (o también grafo apical o grafo de vértice) es un tipo de grafo que puede convertirse en un grafo plano mediante la eliminación de un solo vértice. El vértice eliminado se llama ápice del grafo. Es "un" ápice, y no "el" ápice, porque uno de estos grafos puede tener más de uno, como por ejemplo en el caso de los grafos mínimos no planos K5 o K3,3, en los que cada vértice es un ápice. Los grafos de ápice incluyen grafos que en sí mismos son planos, en cuyo caso nuevamente cada vértice es un ápice. El grafo nulo también se cuenta como un grafo de ápice aunque no tenga ningún vértice para eliminar. Son bajo la operación de tomar menores y juegan un papel considerable en varios otros aspectos de la teoría de grafos menores: los embebidos sin enlaces, la , los grafos YΔY-reducibles, y su relación con el y con el diámetro de un grafo. (es)
- В теории графов верхушечный граф — это граф, который можно сделать планарным удалением одной вершины. Удалённая вершина называется верхушкой графа. Заметим, что верхушка может быть не одна. Например, в минимальном непланарном графе K5 или K3,3 каждая вершина является верхушкой. Верхушечные графы включают изначально планарные графы, в которых каждая вершина является верхушкой. Нуль-граф считается также верхушечным, хотя в нём нет вершин для удаления. Верхушечные графы замкнуты относительно операции образования миноров и играют большую роль в некоторых других аспектах теории миноров графов, включая незацепленное вложение, гипотезу Хадвигера, YΔY-сводимые графы и связь между древесной шириной и диаметром графа. (ru)
- В теорії графів верхівковий граф — це граф, який можна зробити планарним видаленням однієї вершини. Видалену вершину називають верхівкою графа. Зауважимо, що верхівка може бути не одна. Наприклад, у мінімальному непланарному графі K5 або K3,3 кожна вершина є верхівкою. Верхівкові графи включають початково планарні графи, в яких кожна вершина є верхівкою. Нуль-граф вважається також верхівковим, хоча в ньому немає вершин для видалення. Верхівкові графи замкнуті відносно операції утворення мінорів і грають важливу роль у деяких інших аспектах теорії мінорів графів, таких як незачеплене вкладення, гіпотеза Хадвігера, YΔY-звідні графи і зв'язок між деревною шириною і діаметром графа. (uk)
|
rdfs:comment
|
- In graph theory, a branch of mathematics, an apex graph is a graph that can be made planar by the removal of a single vertex. The deleted vertex is called an apex of the graph. It is an apex, not the apex because an apex graph may have more than one apex; for example, in the minimal nonplanar graphs K5 or K3,3, every vertex is an apex. The apex graphs include graphs that are themselves planar, in which case again every vertex is an apex. The null graph is also counted as an apex graph even though it has no vertex to remove. (en)
- En teoría de grafos, una rama de las matemáticas, un grafo de ápice (o también grafo apical o grafo de vértice) es un tipo de grafo que puede convertirse en un grafo plano mediante la eliminación de un solo vértice. El vértice eliminado se llama ápice del grafo. Es "un" ápice, y no "el" ápice, porque uno de estos grafos puede tener más de uno, como por ejemplo en el caso de los grafos mínimos no planos K5 o K3,3, en los que cada vértice es un ápice. Los grafos de ápice incluyen grafos que en sí mismos son planos, en cuyo caso nuevamente cada vértice es un ápice. El grafo nulo también se cuenta como un grafo de ápice aunque no tenga ningún vértice para eliminar. (es)
- В теории графов верхушечный граф — это граф, который можно сделать планарным удалением одной вершины. Удалённая вершина называется верхушкой графа. Заметим, что верхушка может быть не одна. Например, в минимальном непланарном графе K5 или K3,3 каждая вершина является верхушкой. Верхушечные графы включают изначально планарные графы, в которых каждая вершина является верхушкой. Нуль-граф считается также верхушечным, хотя в нём нет вершин для удаления. (ru)
- В теорії графів верхівковий граф — це граф, який можна зробити планарним видаленням однієї вершини. Видалену вершину називають верхівкою графа. Зауважимо, що верхівка може бути не одна. Наприклад, у мінімальному непланарному графі K5 або K3,3 кожна вершина є верхівкою. Верхівкові графи включають початково планарні графи, в яких кожна вершина є верхівкою. Нуль-граф вважається також верхівковим, хоча в ньому немає вершин для видалення. (uk)
|