An Entity of Type: disease, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the André–Oort conjecture is a problem in Diophantine geometry, a branch of number theory, that can be seen as a non-abelian analogue of the Manin–Mumford conjecture, which is now a theorem (and is actually proven in several genuinely different ways). The conjecture concerns itself with a characterization of the Zariski closure of sets of special points in Shimura varieties.A special case of the conjecture was stated by Yves André in 1989 and a more general statement (albeit with a restriction on the type of the Shimura variety) was conjectured by Frans Oort in 1995. The modern version is a natural generalization of these two conjectures.

Property Value
dbo:abstract
  • In mathematics, the André–Oort conjecture is a problem in Diophantine geometry, a branch of number theory, that can be seen as a non-abelian analogue of the Manin–Mumford conjecture, which is now a theorem (and is actually proven in several genuinely different ways). The conjecture concerns itself with a characterization of the Zariski closure of sets of special points in Shimura varieties.A special case of the conjecture was stated by Yves André in 1989 and a more general statement (albeit with a restriction on the type of the Shimura variety) was conjectured by Frans Oort in 1995. The modern version is a natural generalization of these two conjectures. (en)
  • Inom matematiken är André–Oorts förmodan ett öppet problem som generaliserar . En prototypisk form av förmodan framlades av år 1989 och en mer allmän version av år 1995. Den moderna versionen är en naturlig generalisering av dessa två förmodanden. (sv)
  • Гипотеза Андре — Оорта — проблема в теории чисел, которая обобщает . Начальную версию гипотезы высказал Ив Андре в 1989, а более общую версию высказал Франс Оорт в 1995. Современная версия является обобщением этих двух гипотез. Имеется опубликованное в форме препринта доказательство гипотезы. (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 32262980 (xsd:integer)
dbo:wikiPageLength
  • 9459 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1084659672 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, the André–Oort conjecture is a problem in Diophantine geometry, a branch of number theory, that can be seen as a non-abelian analogue of the Manin–Mumford conjecture, which is now a theorem (and is actually proven in several genuinely different ways). The conjecture concerns itself with a characterization of the Zariski closure of sets of special points in Shimura varieties.A special case of the conjecture was stated by Yves André in 1989 and a more general statement (albeit with a restriction on the type of the Shimura variety) was conjectured by Frans Oort in 1995. The modern version is a natural generalization of these two conjectures. (en)
  • Inom matematiken är André–Oorts förmodan ett öppet problem som generaliserar . En prototypisk form av förmodan framlades av år 1989 och en mer allmän version av år 1995. Den moderna versionen är en naturlig generalisering av dessa två förmodanden. (sv)
  • Гипотеза Андре — Оорта — проблема в теории чисел, которая обобщает . Начальную версию гипотезы высказал Ив Андре в 1989, а более общую версию высказал Франс Оорт в 1995. Современная версия является обобщением этих двух гипотез. Имеется опубликованное в форме препринта доказательство гипотезы. (ru)
rdfs:label
  • André–Oort conjecture (en)
  • Гипотеза Андре — Оорта (ru)
  • André–Oorts förmodan (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is rdfs:seeAlso of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License