dbo:abstract
|
- In mathematics, especially several complex variables, an analytic polyhedron is a subset of the complex space Cn of the form where D is a bounded connected open subset of Cn, are holomorphic on D and P is assumed to be relatively compact in D. If above are polynomials, then the set is called a polynomial polyhedron. Every analytic polyhedron is a domain of holomorphy and it is thus pseudo-convex. The boundary of an analytic polyhedron is contained in the union of the set of hypersurfaces An analytic polyhedron is a Weil polyhedron, or Weil domain if the intersection of any k of the above hypersurfaces has dimension no greater than 2n-k. (en)
- Analytisk polyeder förekommer inom komplex analys (som är ett forskningsfält inom matematiken) och avser ett geometriskt objekt, ett speciellt slag av (öppet) område i ett flerdimensionellt komplext vektorrum, eller mer generellt i en komplex mångfald. Analytiska polyedrar är av intresse för sin speciella geometri och kanske mest för de analytiska egenskaper som objekt förknippade med dem därmed har. (sv)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5074 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- Analytisk polyeder förekommer inom komplex analys (som är ett forskningsfält inom matematiken) och avser ett geometriskt objekt, ett speciellt slag av (öppet) område i ett flerdimensionellt komplext vektorrum, eller mer generellt i en komplex mångfald. Analytiska polyedrar är av intresse för sin speciella geometri och kanske mest för de analytiska egenskaper som objekt förknippade med dem därmed har. (sv)
- In mathematics, especially several complex variables, an analytic polyhedron is a subset of the complex space Cn of the form where D is a bounded connected open subset of Cn, are holomorphic on D and P is assumed to be relatively compact in D. If above are polynomials, then the set is called a polynomial polyhedron. Every analytic polyhedron is a domain of holomorphy and it is thus pseudo-convex. The boundary of an analytic polyhedron is contained in the union of the set of hypersurfaces (en)
|
rdfs:label
|
- Analytic polyhedron (en)
- Analytisk polyeder (sv)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |