An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction.

Property Value
dbo:abstract
  • In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction. (en)
  • 数学、特に代数幾何学や複素多様体論では、随伴公式(adjunction formula)は多様体の標準バンドルとその多様体の内側の超曲面を関係付ける。射影多様体のようなうまく振る舞いの定義できる空間の中へ埋め込まれた多様体についての事実を引き出したり、帰納的に定理を証明したりすることに良く使われる。 (ja)
dbo:wikiPageID
  • 3118117 (xsd:integer)
dbo:wikiPageLength
  • 12373 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1120566073 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In mathematics, especially in algebraic geometry and the theory of complex manifolds, the adjunction formula relates the canonical bundle of a variety and a hypersurface inside that variety. It is often used to deduce facts about varieties embedded in well-behaved spaces such as projective space or to prove theorems by induction. (en)
  • 数学、特に代数幾何学や複素多様体論では、随伴公式(adjunction formula)は多様体の標準バンドルとその多様体の内側の超曲面を関係付ける。射影多様体のようなうまく振る舞いの定義できる空間の中へ埋め込まれた多様体についての事実を引き出したり、帰納的に定理を証明したりすることに良く使われる。 (ja)
rdfs:label
  • Adjunction formula (en)
  • 첨가공식 (대수기하) (ko)
  • 随伴公式 (代数幾何学) (ja)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License