An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, an absolute presentation is one method of defining a group. Recall that to define a group by means of a presentation, one specifies a set of generators so that every element of the group can be written as a product of some of these generators, and a set of relations among those generators. In symbols:

Property Value
dbo:abstract
  • In mathematics, an absolute presentation is one method of defining a group. Recall that to define a group by means of a presentation, one specifies a set of generators so that every element of the group can be written as a product of some of these generators, and a set of relations among those generators. In symbols: Informally is the group generated by the set such that for all . But here there is a tacit assumption that is the "freest" such group as clearly the relations are satisfied in any homomorphic image of . One way of being able to eliminate this tacit assumption is by specifying that certain words in should not be equal to That is we specify a set , called the set of irrelations, such that for all (en)
dbo:wikiPageID
  • 7176811 (xsd:integer)
dbo:wikiPageLength
  • 5109 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1107569543 (xsd:integer)
dbo:wikiPageWikiLink
dct:subject
rdfs:comment
  • In mathematics, an absolute presentation is one method of defining a group. Recall that to define a group by means of a presentation, one specifies a set of generators so that every element of the group can be written as a product of some of these generators, and a set of relations among those generators. In symbols: (en)
rdfs:label
  • Absolute presentation of a group (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License