An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, Abel's irreducibility theorem, a field theory result described in 1829 by Niels Henrik Abel, asserts that if ƒ(x) is a polynomial over a field F that shares a root with a polynomial g(x) that is irreducible over F, then every root of g(x) is a root of ƒ(x). Equivalently, if ƒ(x) shares at least one root with g(x) then ƒ is divisible evenly by g(x), meaning that ƒ(x) can be factored as g(x)h(x) with h(x) also having coefficients in F. Corollaries of the theorem include:

Property Value
dbo:abstract
  • In mathematics, Abel's irreducibility theorem, a field theory result described in 1829 by Niels Henrik Abel, asserts that if ƒ(x) is a polynomial over a field F that shares a root with a polynomial g(x) that is irreducible over F, then every root of g(x) is a root of ƒ(x). Equivalently, if ƒ(x) shares at least one root with g(x) then ƒ is divisible evenly by g(x), meaning that ƒ(x) can be factored as g(x)h(x) with h(x) also having coefficients in F. Corollaries of the theorem include: * If ƒ(x) is irreducible, there is no lower-degree polynomial (other than the zero polynomial) that shares any root with it. For example, x2 − 2 is irreducible over the rational numbers and has as a root; hence there is no linear or constant polynomial over the rationals having as a root. Furthermore, there is no same-degree polynomial that shares any roots with ƒ(x), other than constant multiples of ƒ(x). * If ƒ(x) ≠ g(x) are two different irreducible monic polynomials, then they share no roots. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 28021563 (xsd:integer)
dbo:wikiPageLength
  • 3233 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1094056209 (xsd:integer)
dbo:wikiPageWikiLink
dbp:title
  • Abel's Irreducibility Theorem (en)
dbp:urlname
  • AbelsIrreducibilityTheorem (en)
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • In mathematics, Abel's irreducibility theorem, a field theory result described in 1829 by Niels Henrik Abel, asserts that if ƒ(x) is a polynomial over a field F that shares a root with a polynomial g(x) that is irreducible over F, then every root of g(x) is a root of ƒ(x). Equivalently, if ƒ(x) shares at least one root with g(x) then ƒ is divisible evenly by g(x), meaning that ƒ(x) can be factored as g(x)h(x) with h(x) also having coefficients in F. Corollaries of the theorem include: (en)
rdfs:label
  • Abel's irreducibility theorem (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License