An Entity of Type: organisation, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, particularly in the theory of spinors, the Weyl–Brauer matrices are an explicit realization of a Clifford algebra as a matrix algebra of 2⌊n/2⌋ × 2⌊n/2⌋ matrices. They generalize the Pauli matrices to n dimensions, and are a specific construction of higher-dimensional gamma matrices. They are named for Richard Brauer and Hermann Weyl, and were one of the earliest systematic constructions of spinors from a representation theoretic standpoint.

Property Value
dbo:abstract
  • In mathematics, particularly in the theory of spinors, the Weyl–Brauer matrices are an explicit realization of a Clifford algebra as a matrix algebra of 2⌊n/2⌋ × 2⌊n/2⌋ matrices. They generalize the Pauli matrices to n dimensions, and are a specific construction of higher-dimensional gamma matrices. They are named for Richard Brauer and Hermann Weyl, and were one of the earliest systematic constructions of spinors from a representation theoretic standpoint. The matrices are formed by taking tensor products of the Pauli matrices, and the space of spinors in n dimensions may then be realized as the column vectors of size 2⌊n/2⌋ on which the Weyl–Brauer matrices act. (en)
dbo:wikiPageID
  • 11120053 (xsd:integer)
dbo:wikiPageLength
  • 9923 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1100531551 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, particularly in the theory of spinors, the Weyl–Brauer matrices are an explicit realization of a Clifford algebra as a matrix algebra of 2⌊n/2⌋ × 2⌊n/2⌋ matrices. They generalize the Pauli matrices to n dimensions, and are a specific construction of higher-dimensional gamma matrices. They are named for Richard Brauer and Hermann Weyl, and were one of the earliest systematic constructions of spinors from a representation theoretic standpoint. (en)
rdfs:label
  • Weyl–Brauer matrices (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License