Newton–Krylov methods are numerical methods for solving non-linear problems using Krylov subspace linear solvers. The Newton method, when generalised to systems of multiple variables, includes the inverse of a Jacobian matrix in the iteration formula. Calculation of the inverse of the Jacobian matrix is bypassed by employing a Krylov subspace method, e.g. the Generalized minimal residual method (GMRES), to solve the iteration formula.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
gold:hypernym | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |