dbo:abstract
|
- In number theory, Maier's theorem is a theorem about the numbers of primes in short intervals for which Cramér's probabilistic model of primes gives a wrong answer. The theorem states that if π is the prime-counting function and λ is greater than 1 then does not have a limit as x tends to infinity; more precisely the limit superior is greater than 1, and the limit inferior is less than 1. The Cramér model of primes predicts incorrectly that it has limit 1 when λ≥2 (using the Borel–Cantelli lemma). (en)
- Inom talteori är Maiers sats, bevisad av 1985, en sats om primtal i korta intervall. Satsen säger att om π är primtalsfunktionen och λ är större än 1 saknar ett gränsvärde då x närmar sig oändlighet. (sv)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2884 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- In number theory, Maier's theorem is a theorem about the numbers of primes in short intervals for which Cramér's probabilistic model of primes gives a wrong answer. The theorem states that if π is the prime-counting function and λ is greater than 1 then does not have a limit as x tends to infinity; more precisely the limit superior is greater than 1, and the limit inferior is less than 1. The Cramér model of primes predicts incorrectly that it has limit 1 when λ≥2 (using the Borel–Cantelli lemma). (en)
- Inom talteori är Maiers sats, bevisad av 1985, en sats om primtal i korta intervall. Satsen säger att om π är primtalsfunktionen och λ är större än 1 saknar ett gränsvärde då x närmar sig oändlighet. (sv)
|
rdfs:label
|
- Maier's theorem (en)
- Maiers sats (sv)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:knownFor
of | |
is dbo:wikiPageWikiLink
of | |
is dbp:knownFor
of | |
is foaf:primaryTopic
of | |