An Entity of Type: Person100007846, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In number theory, Maier's theorem is a theorem about the numbers of primes in short intervals for which Cramér's probabilistic model of primes gives a wrong answer. The theorem states that if π is the prime-counting function and λ is greater than 1 then does not have a limit as x tends to infinity; more precisely the limit superior is greater than 1, and the limit inferior is less than 1. The Cramér model of primes predicts incorrectly that it has limit 1 when λ≥2 (using the Borel–Cantelli lemma).

Property Value
dbo:abstract
  • In number theory, Maier's theorem is a theorem about the numbers of primes in short intervals for which Cramér's probabilistic model of primes gives a wrong answer. The theorem states that if π is the prime-counting function and λ is greater than 1 then does not have a limit as x tends to infinity; more precisely the limit superior is greater than 1, and the limit inferior is less than 1. The Cramér model of primes predicts incorrectly that it has limit 1 when λ≥2 (using the Borel–Cantelli lemma). (en)
  • Inom talteori är Maiers sats, bevisad av 1985, en sats om primtal i korta intervall. Satsen säger att om π är primtalsfunktionen och λ är större än 1 saknar ett gränsvärde då x närmar sig oändlighet. (sv)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 22084488 (xsd:integer)
dbo:wikiPageLength
  • 2884 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1034886013 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In number theory, Maier's theorem is a theorem about the numbers of primes in short intervals for which Cramér's probabilistic model of primes gives a wrong answer. The theorem states that if π is the prime-counting function and λ is greater than 1 then does not have a limit as x tends to infinity; more precisely the limit superior is greater than 1, and the limit inferior is less than 1. The Cramér model of primes predicts incorrectly that it has limit 1 when λ≥2 (using the Borel–Cantelli lemma). (en)
  • Inom talteori är Maiers sats, bevisad av 1985, en sats om primtal i korta intervall. Satsen säger att om π är primtalsfunktionen och λ är större än 1 saknar ett gränsvärde då x närmar sig oändlighet. (sv)
rdfs:label
  • Maier's theorem (en)
  • Maiers sats (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:knownFor of
is dbo:wikiPageWikiLink of
is dbp:knownFor of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License