dbo:abstract
|
- In differential geometry, Hilbert's theorem (1901) states that there exists no complete regular surface of constant negative gaussian curvature immersed in . This theorem answers the question for the negative case of which surfaces in can be obtained by isometrically immersing complete manifolds with constant curvature. (en)
- En géométrie différentielle, le théorème de Hilbert, publié par David Hilbert en 1901, affirme qu'on ne peut pas représenter le plan hyperbolique dans l'espace usuel, ou plus rigoureusement qu'il n'existe pas de surfaces régulières de courbure constante négative immergées isométriquement dans . (fr)
- In geometria differenziale il teorema di Hilbert (1901) afferma che non esiste alcuna superficie regolare completa di curvatura gaussiana costante negativa immersa in . Il teorema di Hilbert fu dimostrato per la prima volta da David Hilbert nel testo Über Flächen von konstanter Krümmung (Trans. Amer. Math. Soc. 2 (1901), 87-99). E. Holmgren fornì una dimostrazione alternativa nel 1902 nel testo Sur les surfaces à courbure constante negative. (it)
- In de differentiaalmeetkunde, een deelgebied van de meetkunde, stelt de stelling van Hilbert (1901) dat er geen oppervlak, , met een constante negatieve gaussiaanse kromming bestaat, ingedompeld in . Deze stelling beantwoordt de vraag voor het negatieve geval waarvan oppervlakken in kunnen worden verkregen door het isometrisch indompelen van complete variëteiten met constante kromming. De stelling van Hilbert werd voor het eerst behandeld door David Hilbert in zijn, "Über Flächen von konstanter Krümmung" (Trans. Amer. Math. Soc. 2 (1901), 87-99). Een ander bewijs werd niet veel later gegeven door E. Holmgren, "Sur les surfaces à courbure constante negative," (1902). (nl)
- Теорема Гильберта о погружении плоскости Лобачевского гласит, что плоскость Лобачевского не допускает гладкого изометрического погружения в трёхмерное евклидово пространство. (ru)
- Теорема Гільберта про занурення площини Лобачевського говорить, що площина Лобачевського не допускає гладкого ізометричного занурення в тривимірний евклідів простір. Теорема доведена Давидом Гільбертом в 1901 році. Теорема Неша про регулярні вкладення, говорить, що будь-який рімановий многовид може бути ізометрично вкладений в евклідів простір достатньо високої розмірності. (uk)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 9387 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- In differential geometry, Hilbert's theorem (1901) states that there exists no complete regular surface of constant negative gaussian curvature immersed in . This theorem answers the question for the negative case of which surfaces in can be obtained by isometrically immersing complete manifolds with constant curvature. (en)
- En géométrie différentielle, le théorème de Hilbert, publié par David Hilbert en 1901, affirme qu'on ne peut pas représenter le plan hyperbolique dans l'espace usuel, ou plus rigoureusement qu'il n'existe pas de surfaces régulières de courbure constante négative immergées isométriquement dans . (fr)
- In geometria differenziale il teorema di Hilbert (1901) afferma che non esiste alcuna superficie regolare completa di curvatura gaussiana costante negativa immersa in . Il teorema di Hilbert fu dimostrato per la prima volta da David Hilbert nel testo Über Flächen von konstanter Krümmung (Trans. Amer. Math. Soc. 2 (1901), 87-99). E. Holmgren fornì una dimostrazione alternativa nel 1902 nel testo Sur les surfaces à courbure constante negative. (it)
- Теорема Гильберта о погружении плоскости Лобачевского гласит, что плоскость Лобачевского не допускает гладкого изометрического погружения в трёхмерное евклидово пространство. (ru)
- Теорема Гільберта про занурення площини Лобачевського говорить, що площина Лобачевського не допускає гладкого ізометричного занурення в тривимірний евклідів простір. Теорема доведена Давидом Гільбертом в 1901 році. Теорема Неша про регулярні вкладення, говорить, що будь-який рімановий многовид може бути ізометрично вкладений в евклідів простір достатньо високої розмірності. (uk)
- In de differentiaalmeetkunde, een deelgebied van de meetkunde, stelt de stelling van Hilbert (1901) dat er geen oppervlak, , met een constante negatieve gaussiaanse kromming bestaat, ingedompeld in . Deze stelling beantwoordt de vraag voor het negatieve geval waarvan oppervlakken in kunnen worden verkregen door het isometrisch indompelen van complete variëteiten met constante kromming. (nl)
|
rdfs:label
|
- Hilbert's theorem (differential geometry) (en)
- Teorema di Hilbert (it)
- Théorème de Hilbert (géométrie différentielle) (fr)
- Stelling van Hilbert (nl)
- Теорема Гильберта о погружении плоскости Лобачевского (ru)
- Теорема Гільберта про занурення площини Лобачевського (uk)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |