An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, the Farrell–Markushevich theorem, proved independently by O. J. Farrell (1899–1981) and A. I. Markushevich (1908–1979) in 1934, is a result concerning the approximation in mean square of holomorphic functions on a bounded open set in the complex plane by complex polynomials. It states that complex polynomials form a dense subspace of the Bergman space of a domain bounded by a simple closed Jordan curve. The Gram–Schmidt process can be used to construct an orthonormal basis in the Bergman space and hence an explicit form of the Bergman kernel, which in turn yields an explicit Riemann mapping function for the domain.

Property Value
dbo:abstract
  • In mathematics, the Farrell–Markushevich theorem, proved independently by O. J. Farrell (1899–1981) and A. I. Markushevich (1908–1979) in 1934, is a result concerning the approximation in mean square of holomorphic functions on a bounded open set in the complex plane by complex polynomials. It states that complex polynomials form a dense subspace of the Bergman space of a domain bounded by a simple closed Jordan curve. The Gram–Schmidt process can be used to construct an orthonormal basis in the Bergman space and hence an explicit form of the Bergman kernel, which in turn yields an explicit Riemann mapping function for the domain. (en)
  • Inom matematiken är Farrell–Markusjevitjs sats, bevisad oberoende av (1899–1981) och Alexej Markusjevitj år 1934, ett resultat om approximering av analytiska funktioner i en begränsad öppen mängd i komplexa planet med komplexa polynom. Satsen säger att de komplexa polynomen bildar en tät delmängd av av en domän begränsad av en enkel sluten Jordankurva. (sv)
dbo:wikiPageID
  • 36992485 (xsd:integer)
dbo:wikiPageLength
  • 4366 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1026122001 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, the Farrell–Markushevich theorem, proved independently by O. J. Farrell (1899–1981) and A. I. Markushevich (1908–1979) in 1934, is a result concerning the approximation in mean square of holomorphic functions on a bounded open set in the complex plane by complex polynomials. It states that complex polynomials form a dense subspace of the Bergman space of a domain bounded by a simple closed Jordan curve. The Gram–Schmidt process can be used to construct an orthonormal basis in the Bergman space and hence an explicit form of the Bergman kernel, which in turn yields an explicit Riemann mapping function for the domain. (en)
  • Inom matematiken är Farrell–Markusjevitjs sats, bevisad oberoende av (1899–1981) och Alexej Markusjevitj år 1934, ett resultat om approximering av analytiska funktioner i en begränsad öppen mängd i komplexa planet med komplexa polynom. Satsen säger att de komplexa polynomen bildar en tät delmängd av av en domän begränsad av en enkel sluten Jordankurva. (sv)
rdfs:label
  • Farrell–Markushevich theorem (en)
  • Farrell–Markusjevitjs sats (sv)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:doctoralStudent of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is dbp:doctoralStudents of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License