An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, Shephard's problem, is the following geometrical question asked by Geoffrey Colin Shephard in 1964: if K and L are centrally symmetric convex bodies in n-dimensional Euclidean space such that whenever K and L are projected onto a hyperplane, the volume of the projection of K is smaller than the volume of the projection of L, then does it follow that the volume of K is smaller than that of L? Vk(πk(K)) is sometimes known as the brightness of K and the function Vk o πk as a (k-dimensional) brightness function.

Property Value
dbo:abstract
  • In mathematics, Shephard's problem, is the following geometrical question asked by Geoffrey Colin Shephard in 1964: if K and L are centrally symmetric convex bodies in n-dimensional Euclidean space such that whenever K and L are projected onto a hyperplane, the volume of the projection of K is smaller than the volume of the projection of L, then does it follow that the volume of K is smaller than that of L? In this case, "centrally symmetric" means that the reflection of K in the origin, −K, is a translate of K, and similarly for L. If πk : Rn → Πk is a projection of Rn onto some k-dimensional hyperplane Πk (not necessarily a coordinate hyperplane) and Vk denotes k-dimensional volume, Shephard's problem is to determine the truth or falsity of the implication Vk(πk(K)) is sometimes known as the brightness of K and the function Vk o πk as a (k-dimensional) brightness function. In dimensions n = 1 and 2, the answer to Shephard's problem is "yes". In 1967, however, Petty and Schneider showed that the answer is "no" for every n ≥ 3. The solution of Shephard's problem requires Minkowski's first inequality for convex bodies and the notion of projection bodies of convex bodies. (en)
  • Задача Шепарда — вопрос выпуклой геометрии о сравнении объёмов двух симметричных выпуклых тел при условии, что в любом направлении площадь проекции первого не превосходит площади проекции второго. Вопрос был сформулирован в 1964 году. Ответ на этот вопрос — «да» в размерности 2 и «нет» в размерности 3 и выше.Последнее было доказано независимо и Шнайдером в 1967 году. (ru)
dbo:wikiPageID
  • 10614436 (xsd:integer)
dbo:wikiPageLength
  • 3193 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1105059359 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • Задача Шепарда — вопрос выпуклой геометрии о сравнении объёмов двух симметричных выпуклых тел при условии, что в любом направлении площадь проекции первого не превосходит площади проекции второго. Вопрос был сформулирован в 1964 году. Ответ на этот вопрос — «да» в размерности 2 и «нет» в размерности 3 и выше.Последнее было доказано независимо и Шнайдером в 1967 году. (ru)
  • In mathematics, Shephard's problem, is the following geometrical question asked by Geoffrey Colin Shephard in 1964: if K and L are centrally symmetric convex bodies in n-dimensional Euclidean space such that whenever K and L are projected onto a hyperplane, the volume of the projection of K is smaller than the volume of the projection of L, then does it follow that the volume of K is smaller than that of L? Vk(πk(K)) is sometimes known as the brightness of K and the function Vk o πk as a (k-dimensional) brightness function. (en)
rdfs:label
  • Shephard's problem (en)
  • Задача Шепарда (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License