An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A rotor is an object in the geometric algebra (also called Clifford algebra) of a vector space that represents a rotation about the origin. The term originated with William Kingdon Clifford, in showing that the quaternion algebra is just a special case of Hermann Grassmann's "theory of extension" (Ausdehnungslehre). Hestenes defined a rotor to be any element of a geometric algebra that can be written as the product of an even number of unit vectors and satisfies , where is the "reverse" of —that is, the product of the same vectors, but in reverse order.

Property Value
dbo:abstract
  • Un rotor es un elemento en álgebra geométrica (o más generalmente, en álgebra de Clifford) que define la rotación de una o general sobre el origen de coordenadas.​ Normalmente están basados a partir de considerar un número par de reflexiones, que generan rotaciones (véase también el ). El término surgió a partir de los trabajos de William Kingdon Clifford,​ con los que demostró que el álgebra de los cuaterniones es solo un caso especial de la teoría de la extensión de Hermann Grassmann (Ausdehnungslehre).​ Hestenes​ definió un rotor como cualquier elemento de un álgebra geométrica que se puede escribir como producto de un número par de vectores unitarios y satisface que , donde es el inverso de , es decir, el producto de los mismos vectores, pero en orden inverso. (es)
  • A rotor is an object in the geometric algebra (also called Clifford algebra) of a vector space that represents a rotation about the origin. The term originated with William Kingdon Clifford, in showing that the quaternion algebra is just a special case of Hermann Grassmann's "theory of extension" (Ausdehnungslehre). Hestenes defined a rotor to be any element of a geometric algebra that can be written as the product of an even number of unit vectors and satisfies , where is the "reverse" of —that is, the product of the same vectors, but in reverse order. (en)
dbo:thumbnail
dbo:wikiPageID
  • 9807828 (xsd:integer)
dbo:wikiPageLength
  • 6686 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1086094240 (xsd:integer)
dbo:wikiPageWikiLink
dbp:caption
  • α < θ/2 (en)
  • α > θ/2 (en)
dbp:footer
  • Rotation of a vector a through angle θ, as a double reflection along two unit vectors n and m, separated by angle θ/2 . Each prime on a indicates a reflection. The plane of the diagram is the plane of rotation. (en)
dbp:image
  • Rotation of a vector as double reflection along vectors .svg (en)
dbp:width
  • 130 (xsd:integer)
  • 140 (xsd:integer)
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • A rotor is an object in the geometric algebra (also called Clifford algebra) of a vector space that represents a rotation about the origin. The term originated with William Kingdon Clifford, in showing that the quaternion algebra is just a special case of Hermann Grassmann's "theory of extension" (Ausdehnungslehre). Hestenes defined a rotor to be any element of a geometric algebra that can be written as the product of an even number of unit vectors and satisfies , where is the "reverse" of —that is, the product of the same vectors, but in reverse order. (en)
  • Un rotor es un elemento en álgebra geométrica (o más generalmente, en álgebra de Clifford) que define la rotación de una o general sobre el origen de coordenadas.​ Normalmente están basados a partir de considerar un número par de reflexiones, que generan rotaciones (véase también el ). (es)
rdfs:label
  • Rotor (matemáticas) (es)
  • Rotor (mathematics) (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License