An Entity of Type: Abstraction100002137, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A ribbon Hopf algebra is a quasitriangular Hopf algebra which possess an invertible central element more commonly known as the ribbon element, such that the following conditions hold: where . Note that the element u exists for any quasitriangular Hopf algebra, and must always be central and satisfies , so that all that is required is that it have a central square root with the above properties. Here is a vector space is the multiplication map is the co-product map is the unit operator is the co-unit operator is the antipode is a universal R matrix We assume that the underlying field is

Property Value
dbo:abstract
  • A ribbon Hopf algebra is a quasitriangular Hopf algebra which possess an invertible central element more commonly known as the ribbon element, such that the following conditions hold: where . Note that the element u exists for any quasitriangular Hopf algebra, and must always be central and satisfies , so that all that is required is that it have a central square root with the above properties. Here is a vector space is the multiplication map is the co-product map is the unit operator is the co-unit operator is the antipode is a universal R matrix We assume that the underlying field is If is finite-dimensional, one could equivalently call it ribbon Hopf if and only if its category of (say, left) modules is ribbon; if is finite-dimensional and quasi-triangular, then it is ribbon if and only if its category of (say, left) modules is pivotal. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 6801871 (xsd:integer)
dbo:wikiPageLength
  • 2764 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 993914795 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • A ribbon Hopf algebra is a quasitriangular Hopf algebra which possess an invertible central element more commonly known as the ribbon element, such that the following conditions hold: where . Note that the element u exists for any quasitriangular Hopf algebra, and must always be central and satisfies , so that all that is required is that it have a central square root with the above properties. Here is a vector space is the multiplication map is the co-product map is the unit operator is the co-unit operator is the antipode is a universal R matrix We assume that the underlying field is (en)
rdfs:label
  • Ribbon Hopf algebra (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License