A ribbon Hopf algebra is a quasitriangular Hopf algebra which possess an invertible central element more commonly known as the ribbon element, such that the following conditions hold: where . Note that the element u exists for any quasitriangular Hopf algebra, and must always be central and satisfies , so that all that is required is that it have a central square root with the above properties. Here is a vector space is the multiplication map is the co-product map is the unit operator is the co-unit operator is the antipode is a universal R matrix We assume that the underlying field is
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageExternalLink | |
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdf:type | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |