About: Reachability

An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

그래프 이론에서 도달성, 도달 가능성(reachability)은 그래프 안의 하나의 꼭짓점에서 다른 꼭짓점으로 도달할 수 있는 가능성을 말한다. 로 시작하고 로 끝나는 인접한 일련의 꼭짓점(예: 경로)이 있다면 꼭짓점 는 꼭짓점 에 도달할 수 있다.(그리고 는 로부터 도달이 가능하다) 방향이 없는(무향) 그래프에서 한 쌍의 꼭짓점 간의 도달성은 그래프의 연결 요소를 식별함으로써 결정할 수 있다. 이러한 그래프에서 임의의 쌍의 꼭짓점들은 동일한 연결 요소에 속해 있을 경우 서로에게 도달할 수 있다. 무향 그래프의 연결 요소는 선형 시간에서 식별이 가능하다.

Property Value
dbo:abstract
  • 그래프 이론에서 도달성, 도달 가능성(reachability)은 그래프 안의 하나의 꼭짓점에서 다른 꼭짓점으로 도달할 수 있는 가능성을 말한다. 로 시작하고 로 끝나는 인접한 일련의 꼭짓점(예: 경로)이 있다면 꼭짓점 는 꼭짓점 에 도달할 수 있다.(그리고 는 로부터 도달이 가능하다) 방향이 없는(무향) 그래프에서 한 쌍의 꼭짓점 간의 도달성은 그래프의 연결 요소를 식별함으로써 결정할 수 있다. 이러한 그래프에서 임의의 쌍의 꼭짓점들은 동일한 연결 요소에 속해 있을 경우 서로에게 도달할 수 있다. 무향 그래프의 연결 요소는 선형 시간에서 식별이 가능하다. (ko)
  • Osiągalność (teoria grafów) – relacja dwuargumentowa określona na zbiorze wierzchołków danego grafu skierowanego G = (V, E), gdzie V jest skończonym zbiorem wierzchołków i E jest skończonym zbiorem krawędzi (które są parami wierzchołków) tego grafu. Relacja osiągalności zachodzi dla pary (x,y) (x,y ∊ V) wtedy i tylko wtedy, gdy istnieje ścieżka w grafie G prowadząca od wierzchołka x do wierzchołka y. Wówczas mówimy, że wierzchołek y jest osiągalny z wierzchołka x w grafie G. (pl)
  • Em teoria dos grafos, a atingibilidade se refere a capacidade de ir de um vértice para outro em um grafo. Dizemos que um vértice pode alcançar outro vértice (ou que é atingível a partir de ) se exite uma sequência de vértices adjacentes (ex.: um caminho) que começam com e terminam com . Em um grafo não-direcionado, é suficiente identificar apenas os componentes conexos, assim como qualquer par de vértices, em tal grafo, pode se alcançar se e somente se eles pertencem ao mesmo componente conexo. Os componentes conexos de um grafo podem ser identificados em tempo linear. Lembramos que este artigo foca em atingibilidade nas configurações de grafos orientados. (pt)
  • 그래프 이론에서 도달성, 도달 가능성(reachability)은 그래프 안의 하나의 꼭짓점에서 다른 꼭짓점으로 도달할 수 있는 가능성을 말한다. 로 시작하고 로 끝나는 인접한 일련의 꼭짓점(예: 경로)이 있다면 꼭짓점 는 꼭짓점 에 도달할 수 있다.(그리고 는 로부터 도달이 가능하다) 방향이 없는(무향) 그래프에서 한 쌍의 꼭짓점 간의 도달성은 그래프의 연결 요소를 식별함으로써 결정할 수 있다. 이러한 그래프에서 임의의 쌍의 꼭짓점들은 동일한 연결 요소에 속해 있을 경우 서로에게 도달할 수 있다. 무향 그래프의 연결 요소는 선형 시간에서 식별이 가능하다. (ko)
  • Osiągalność (teoria grafów) – relacja dwuargumentowa określona na zbiorze wierzchołków danego grafu skierowanego G = (V, E), gdzie V jest skończonym zbiorem wierzchołków i E jest skończonym zbiorem krawędzi (które są parami wierzchołków) tego grafu. Relacja osiągalności zachodzi dla pary (x,y) (x,y ∊ V) wtedy i tylko wtedy, gdy istnieje ścieżka w grafie G prowadząca od wierzchołka x do wierzchołka y. Wówczas mówimy, że wierzchołek y jest osiągalny z wierzchołka x w grafie G. (pl)
  • Em teoria dos grafos, a atingibilidade se refere a capacidade de ir de um vértice para outro em um grafo. Dizemos que um vértice pode alcançar outro vértice (ou que é atingível a partir de ) se exite uma sequência de vértices adjacentes (ex.: um caminho) que começam com e terminam com . Em um grafo não-direcionado, é suficiente identificar apenas os componentes conexos, assim como qualquer par de vértices, em tal grafo, pode se alcançar se e somente se eles pertencem ao mesmo componente conexo. Os componentes conexos de um grafo podem ser identificados em tempo linear. Lembramos que este artigo foca em atingibilidade nas configurações de grafos orientados. (pt)
dbo:wikiPageID
  • 2833097 (xsd:integer)
dbo:wikiPageLength
  • 16120 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1011274980 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 그래프 이론에서 도달성, 도달 가능성(reachability)은 그래프 안의 하나의 꼭짓점에서 다른 꼭짓점으로 도달할 수 있는 가능성을 말한다. 로 시작하고 로 끝나는 인접한 일련의 꼭짓점(예: 경로)이 있다면 꼭짓점 는 꼭짓점 에 도달할 수 있다.(그리고 는 로부터 도달이 가능하다) 방향이 없는(무향) 그래프에서 한 쌍의 꼭짓점 간의 도달성은 그래프의 연결 요소를 식별함으로써 결정할 수 있다. 이러한 그래프에서 임의의 쌍의 꼭짓점들은 동일한 연결 요소에 속해 있을 경우 서로에게 도달할 수 있다. 무향 그래프의 연결 요소는 선형 시간에서 식별이 가능하다. (ko)
  • Osiągalność (teoria grafów) – relacja dwuargumentowa określona na zbiorze wierzchołków danego grafu skierowanego G = (V, E), gdzie V jest skończonym zbiorem wierzchołków i E jest skończonym zbiorem krawędzi (które są parami wierzchołków) tego grafu. Relacja osiągalności zachodzi dla pary (x,y) (x,y ∊ V) wtedy i tylko wtedy, gdy istnieje ścieżka w grafie G prowadząca od wierzchołka x do wierzchołka y. Wówczas mówimy, że wierzchołek y jest osiągalny z wierzchołka x w grafie G. (pl)
  • Em teoria dos grafos, a atingibilidade se refere a capacidade de ir de um vértice para outro em um grafo. Dizemos que um vértice pode alcançar outro vértice (ou que é atingível a partir de ) se exite uma sequência de vértices adjacentes (ex.: um caminho) que começam com e terminam com . (pt)
  • 그래프 이론에서 도달성, 도달 가능성(reachability)은 그래프 안의 하나의 꼭짓점에서 다른 꼭짓점으로 도달할 수 있는 가능성을 말한다. 로 시작하고 로 끝나는 인접한 일련의 꼭짓점(예: 경로)이 있다면 꼭짓점 는 꼭짓점 에 도달할 수 있다.(그리고 는 로부터 도달이 가능하다) 방향이 없는(무향) 그래프에서 한 쌍의 꼭짓점 간의 도달성은 그래프의 연결 요소를 식별함으로써 결정할 수 있다. 이러한 그래프에서 임의의 쌍의 꼭짓점들은 동일한 연결 요소에 속해 있을 경우 서로에게 도달할 수 있다. 무향 그래프의 연결 요소는 선형 시간에서 식별이 가능하다. (ko)
  • Osiągalność (teoria grafów) – relacja dwuargumentowa określona na zbiorze wierzchołków danego grafu skierowanego G = (V, E), gdzie V jest skończonym zbiorem wierzchołków i E jest skończonym zbiorem krawędzi (które są parami wierzchołków) tego grafu. Relacja osiągalności zachodzi dla pary (x,y) (x,y ∊ V) wtedy i tylko wtedy, gdy istnieje ścieżka w grafie G prowadząca od wierzchołka x do wierzchołka y. Wówczas mówimy, że wierzchołek y jest osiągalny z wierzchołka x w grafie G. (pl)
  • Em teoria dos grafos, a atingibilidade se refere a capacidade de ir de um vértice para outro em um grafo. Dizemos que um vértice pode alcançar outro vértice (ou que é atingível a partir de ) se exite uma sequência de vértices adjacentes (ex.: um caminho) que começam com e terminam com . (pt)
rdfs:label
  • Reachability (en)
  • 도달성 (ko)
  • Osiągalność (teoria grafów) (pl)
  • Atingibilidade (teoria dos grafos) (pt)
  • Достижимость (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License