An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A quasi-triangular quasi-Hopf algebra is a specialized form of a quasi-Hopf algebra defined by the Ukrainian mathematician Vladimir Drinfeld in 1989. It is also a generalized form of a quasi-triangular Hopf algebra. A quasi-triangular quasi-Hopf algebra is a set where is a quasi-Hopf algebra and known as the R-matrix, is an invertible element such that for all , where is the switch map given by , and where and . The quasi-Hopf algebra becomes triangular if in addition, . The twisting of by is the same as for a quasi-Hopf algebra, with the additional definition of the twisted R-matrix

Property Value
dbo:abstract
  • A quasi-triangular quasi-Hopf algebra is a specialized form of a quasi-Hopf algebra defined by the Ukrainian mathematician Vladimir Drinfeld in 1989. It is also a generalized form of a quasi-triangular Hopf algebra. A quasi-triangular quasi-Hopf algebra is a set where is a quasi-Hopf algebra and known as the R-matrix, is an invertible element such that for all , where is the switch map given by , and where and . The quasi-Hopf algebra becomes triangular if in addition, . The twisting of by is the same as for a quasi-Hopf algebra, with the additional definition of the twisted R-matrix A quasi-triangular (resp. triangular) quasi-Hopf algebra with is a quasi-triangular (resp. triangular) Hopf algebra as the latter two conditions in the definition reduce the conditions of quasi-triangularity of a Hopf algebra. Similarly to the twisting properties of the quasi-Hopf algebra, the property of being quasi-triangular or triangular quasi-Hopf algebra is preserved by twisting. (en)
dbo:wikiPageID
  • 4965178 (xsd:integer)
dbo:wikiPageLength
  • 2356 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1099383431 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdfs:comment
  • A quasi-triangular quasi-Hopf algebra is a specialized form of a quasi-Hopf algebra defined by the Ukrainian mathematician Vladimir Drinfeld in 1989. It is also a generalized form of a quasi-triangular Hopf algebra. A quasi-triangular quasi-Hopf algebra is a set where is a quasi-Hopf algebra and known as the R-matrix, is an invertible element such that for all , where is the switch map given by , and where and . The quasi-Hopf algebra becomes triangular if in addition, . The twisting of by is the same as for a quasi-Hopf algebra, with the additional definition of the twisted R-matrix (en)
rdfs:label
  • Quasi-triangular quasi-Hopf algebra (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License