dbo:abstract
|
- In graph theory, an odd cycle transversal of an undirected graph is a set of vertices of the graph that has a nonempty intersection with every odd cycle in the graph. Removing the vertices of an odd cycle transversal from a graph leaves a bipartite graph as the remaining induced subgraph. (en)
- Сечение нечётных циклов неориентированного графа — это набор вершин графа, который имеет непустое пресечение с любым нечётным циклом в графе. Удаление вершин сечения нечётных циклов из графа оставляет двудольный граф в качестве порождённого подграфа. (ru)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 5744 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdfs:comment
|
- In graph theory, an odd cycle transversal of an undirected graph is a set of vertices of the graph that has a nonempty intersection with every odd cycle in the graph. Removing the vertices of an odd cycle transversal from a graph leaves a bipartite graph as the remaining induced subgraph. (en)
- Сечение нечётных циклов неориентированного графа — это набор вершин графа, который имеет непустое пресечение с любым нечётным циклом в графе. Удаление вершин сечения нечётных циклов из графа оставляет двудольный граф в качестве порождённого подграфа. (ru)
|
rdfs:label
|
- Odd cycle transversal (en)
- Сечение нечётных циклов (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |