An Entity of Type: WikicatOrdinaryDifferentialEquations, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders. A matrix differential equation contains more than one function stacked into vector form with a matrix relating the functions to their derivatives. For example, a first-order matrix ordinary differential equation is where is an vector of functions of an underlying variable , is the vector of first derivatives of these functions, and is an matrix of coefficients. where is an constant vector.

Property Value
dbo:abstract
  • Un sistema de ecuaciones diferenciales es un conjunto de varias ecuaciones diferenciales con varias funciones incógnitas y un conjunto de condiciones de contorno. Una solución del mismo es un conjunto de funciones diferenciables que satisfacen todas y cada una de las ecuaciones del sistema. Según el tipo de ecuaciones diferenciales puede tenerse un sistema de ecuaciones diferenciales ordinarias o un sistema de ecuaciones en derivadas parciales. (es)
  • A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders. A matrix differential equation contains more than one function stacked into vector form with a matrix relating the functions to their derivatives. For example, a first-order matrix ordinary differential equation is where is an vector of functions of an underlying variable , is the vector of first derivatives of these functions, and is an matrix of coefficients. In the case where is constant and has n linearly independent eigenvectors, this differential equation has the following general solution, where λ1, λ2, …, λn are the eigenvalues of A; u1, u2, …, un are the respective eigenvectors of A; and c1, c2, …, cn are constants. More generally, if commutes with its integral then the general solution to the differential equation is where is an constant vector. By use of the Cayley–Hamilton theorem and Vandermonde-type matrices, this formal matrix exponential solution may be reduced to a simple form. Below, this solution is displayed in terms of Putzer's algorithm. (en)
dbo:wikiPageID
  • 20071404 (xsd:integer)
dbo:wikiPageLength
  • 15054 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1083398218 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • Un sistema de ecuaciones diferenciales es un conjunto de varias ecuaciones diferenciales con varias funciones incógnitas y un conjunto de condiciones de contorno. Una solución del mismo es un conjunto de funciones diferenciables que satisfacen todas y cada una de las ecuaciones del sistema. Según el tipo de ecuaciones diferenciales puede tenerse un sistema de ecuaciones diferenciales ordinarias o un sistema de ecuaciones en derivadas parciales. (es)
  • A differential equation is a mathematical equation for an unknown function of one or several variables that relates the values of the function itself and of its derivatives of various orders. A matrix differential equation contains more than one function stacked into vector form with a matrix relating the functions to their derivatives. For example, a first-order matrix ordinary differential equation is where is an vector of functions of an underlying variable , is the vector of first derivatives of these functions, and is an matrix of coefficients. where is an constant vector. (en)
rdfs:label
  • Sistema de ecuaciones diferenciales (es)
  • Matrix differential equation (en)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License