dbo:abstract
|
- Marcatili’s method is an approximate analytical method that describes how light propagates through rectangular dielectric optical waveguides . It was published by Enrique Marcatili in 1969. Optical dielectric waveguides guide electromagnetic waves in the optical spectrum (light). This type of waveguide consists of dielectric materials (e.g., glass, silicon, indium phosphide, etc). The core of the waveguide has a higher index of refraction than its surrounding and the light is guided due to total internal reflection. In a ray description, the light zig-zags between the walls. The geometry of the waveguide dictates the light to propagate with specific velocities and specific distributions of the electric and magnetic fields, known as modes. For rectangular waveguides, these modes cannot be computed analytically. This can be done either using a numerical mode solver, or using an approximate method such as Marcatili’s method. (en)
|
dbo:thumbnail
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 6262 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- Marcatili’s method is an approximate analytical method that describes how light propagates through rectangular dielectric optical waveguides . It was published by Enrique Marcatili in 1969. Optical dielectric waveguides guide electromagnetic waves in the optical spectrum (light). This type of waveguide consists of dielectric materials (e.g., glass, silicon, indium phosphide, etc). The core of the waveguide has a higher index of refraction than its surrounding and the light is guided due to total internal reflection. In a ray description, the light zig-zags between the walls. (en)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |