An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In cryptography, a hard-core predicate of a one-way function f is a predicate b (i.e., a function whose output is a single bit) which is easy to compute (as a function of x) but is hard to compute given f(x). In formal terms, there is no probabilistic polynomial-time (PPT) algorithm that computes b(x) from f(x) with probability significantly greater than one half over random choice of x. In other words, if x is drawn uniformly at random, then given f(x), any PPT adversary can only distinguish the hard-core bit b(x) and a uniformly random bit with negligible advantage over the length of x.

Property Value
dbo:abstract
  • In cryptography, a hard-core predicate of a one-way function f is a predicate b (i.e., a function whose output is a single bit) which is easy to compute (as a function of x) but is hard to compute given f(x). In formal terms, there is no probabilistic polynomial-time (PPT) algorithm that computes b(x) from f(x) with probability significantly greater than one half over random choice of x. In other words, if x is drawn uniformly at random, then given f(x), any PPT adversary can only distinguish the hard-core bit b(x) and a uniformly random bit with negligible advantage over the length of x. A hard-core function can be defined similarly. That is, if x is chosen uniformly at random, then given f(x), any PPT algorithm can only distinguish the hard-core function value h(x) and uniformly random bits of length |h(x)| with negligible advantage over the length of x. A hard-core predicate captures "in a concentrated sense" the hardness of inverting f. While a one-way function is hard to invert, there are no guarantees about the feasibility of computing partial information about the preimage c from the image f(x). For instance, while RSA is conjectured to be a one-way function, the Jacobi symbol of the preimage can be easily computed from that of the image. It is clear that if a one-to-one function has a hard-core predicate, then it must be one way. Oded Goldreich and Leonid Levin (1989) showed how every one-way function can be trivially modified to obtain a one-way function that has a specific hard-core predicate. Let f be a one-way function. Define g(x,r) = (f(x), r) where the length of r is the same as that of x. Let xj denote the jth bit of x and rj the jth bit of r. Then is a hard core predicate of g. Note that b(x, r) = <x, r> where <·, ·> denotes the standard inner product on the vector space (Z2)n. This predicate is hard-core due to computational issues; that is, it is not hard to compute because g(x, r) is information theoretically lossy. Rather, if there exists an algorithm that computes this predicate efficiently, then there is another algorithm that can invert f efficiently. A similar construction yields a hard-core function with O(log |x|) output bits. Suppose f is a strong one-way function. Define g(x, r) = (f(x), r) where |r| = 2|x|. Choose a length function l(n) = O(log n) s.t. l(n) ≤ n. Let Then h(x, r) := b1(x, r) b2(x, r) ... bl(|x|)(x, r) is a hard-core function with output length l(|x|). It is sometimes the case that an actual bit of the input x is hard-core. For example, every single bit of inputs to the RSA function is a hard-core predicate of RSA and blocks of O(log |x|) bits of x are indistinguishable from random bit strings in polynomial time (under the assumption that the RSA function is hard to invert). Hard-core predicates give a way to construct a pseudorandom generator from any one-way permutation. If b is a hard-core predicate of a one-way permutation f, and s is a random seed, then is a pseudorandom bit sequence, where fn means the n-th iteration of applying f on s, and b is the generated hard-core bit by each round n. Hard-core predicates of trapdoor one-way permutations (known as trapdoor predicates) can be used to construct semantically secure public-key encryption schemes. (en)
  • 暗号理論において、一方向性関数 f に関するハードコア述語(ハードコアじゅつご、Hard-core predicate)とは、x からは簡単に計算出来るが f(x) から計算するのは難しい述語 b のことである。より正確には、x をランダムに選んだとき f(x) から b(x) を 1/2 以上の有意な確率で計算できる確率的多項式時間アルゴリズムが存在しないとき、b を f のハードコア述語と呼ぶ。ハードコア関数も同様にして定義される(ただし弱いものと強いものがある)。 ハードコア述語は、関数 f を逆算するときに「一番難しいところ」を捉えた概念である。 一方向性関数は逆算するのが難しい。しかし像 f(x) から原像 x の部分的な情報 c を得ることについては何も言及していない。例えば、は一方向性関数だと予想されているが、原像のヤコビ記号は像から簡単に求められる。 (ja)
  • В криптографии, трудным предикатом для односторонней функции называется функция , принимающая значение 0 или 1, при этом её значение легко вычислить зная , и трудно вычислить зная лишь . Формально, полиномиально вычислимая функция является трудным предикатом для функции , если случайная величина трудно вычислима по случайной величине , где — случайная величина, равномерно распределённая на . (ru)
dbo:wikiPageID
  • 1182871 (xsd:integer)
dbo:wikiPageLength
  • 6095 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1092416759 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdfs:comment
  • 暗号理論において、一方向性関数 f に関するハードコア述語(ハードコアじゅつご、Hard-core predicate)とは、x からは簡単に計算出来るが f(x) から計算するのは難しい述語 b のことである。より正確には、x をランダムに選んだとき f(x) から b(x) を 1/2 以上の有意な確率で計算できる確率的多項式時間アルゴリズムが存在しないとき、b を f のハードコア述語と呼ぶ。ハードコア関数も同様にして定義される(ただし弱いものと強いものがある)。 ハードコア述語は、関数 f を逆算するときに「一番難しいところ」を捉えた概念である。 一方向性関数は逆算するのが難しい。しかし像 f(x) から原像 x の部分的な情報 c を得ることについては何も言及していない。例えば、は一方向性関数だと予想されているが、原像のヤコビ記号は像から簡単に求められる。 (ja)
  • В криптографии, трудным предикатом для односторонней функции называется функция , принимающая значение 0 или 1, при этом её значение легко вычислить зная , и трудно вычислить зная лишь . Формально, полиномиально вычислимая функция является трудным предикатом для функции , если случайная величина трудно вычислима по случайной величине , где — случайная величина, равномерно распределённая на . (ru)
  • In cryptography, a hard-core predicate of a one-way function f is a predicate b (i.e., a function whose output is a single bit) which is easy to compute (as a function of x) but is hard to compute given f(x). In formal terms, there is no probabilistic polynomial-time (PPT) algorithm that computes b(x) from f(x) with probability significantly greater than one half over random choice of x. In other words, if x is drawn uniformly at random, then given f(x), any PPT adversary can only distinguish the hard-core bit b(x) and a uniformly random bit with negligible advantage over the length of x. (en)
rdfs:label
  • Hard-core predicate (en)
  • ハードコア述語 (ja)
  • Трудный бит (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License