An Entity of Type: album, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In graph theory, an edge dominating set for a graph G = (V, E) is a subset D ⊆ E such that every edge not in D is adjacent to at least one edge in D. An edge dominating set is also known as a line dominating set. Figures (a)–(d) are examples of edge dominating sets (thick red lines). A minimum edge dominating set is a smallest edge dominating set. Figures (a) and (b) are examples of minimum edge dominating sets (it can be checked that there is no edge dominating set of size 2 for this graph).

Property Value
dbo:abstract
  • In graph theory, an edge dominating set for a graph G = (V, E) is a subset D ⊆ E such that every edge not in D is adjacent to at least one edge in D. An edge dominating set is also known as a line dominating set. Figures (a)–(d) are examples of edge dominating sets (thick red lines). A minimum edge dominating set is a smallest edge dominating set. Figures (a) and (b) are examples of minimum edge dominating sets (it can be checked that there is no edge dominating set of size 2 for this graph). (en)
  • В теории графов доминирующее множество рёбер (или рёберное доминирующее множество) графа G = (V, E) — это подмножество D ⊆ E, такое, что любое ребро не из D смежно по меньшей мере одному ребру из D. На рисунках (a)–(d) приведены примеры доминирующих множеств рёбер (красные рёбра). Наименьшее доминирующее множество рёбер — это доминирующие множества рёбер с наименьшим размером. На рисунках (a) и (b) представлены примеры наименьших доминирующих множеств рёбер (можно проверить, что для данного графа не существует доминирующего множества из двух рёбер). (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 21689422 (xsd:integer)
dbo:wikiPageLength
  • 5911 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1035648620 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In graph theory, an edge dominating set for a graph G = (V, E) is a subset D ⊆ E such that every edge not in D is adjacent to at least one edge in D. An edge dominating set is also known as a line dominating set. Figures (a)–(d) are examples of edge dominating sets (thick red lines). A minimum edge dominating set is a smallest edge dominating set. Figures (a) and (b) are examples of minimum edge dominating sets (it can be checked that there is no edge dominating set of size 2 for this graph). (en)
  • В теории графов доминирующее множество рёбер (или рёберное доминирующее множество) графа G = (V, E) — это подмножество D ⊆ E, такое, что любое ребро не из D смежно по меньшей мере одному ребру из D. На рисунках (a)–(d) приведены примеры доминирующих множеств рёбер (красные рёбра). Наименьшее доминирующее множество рёбер — это доминирующие множества рёбер с наименьшим размером. На рисунках (a) и (b) представлены примеры наименьших доминирующих множеств рёбер (можно проверить, что для данного графа не существует доминирующего множества из двух рёбер). (ru)
rdfs:label
  • Edge dominating set (en)
  • Доминирующее множество рёбер (ru)
  • Домінівна множина ребер (uk)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License