An Entity of Type: building, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In computing and graph theory, a dynamic connectivity structure is a data structure that dynamically maintains information about the connected components of a graph. The set V of vertices of the graph is fixed, but the set E of edges can change. The three cases, in order of difficulty, are: * Edges are only added to the graph (this can be called incremental connectivity); * Edges are only deleted from the graph (this can be called decremental connectivity); * Edges can be either added or deleted (this can be called fully dynamic connectivity).

Property Value
dbo:abstract
  • En computación y teoría de grafos, una estructura de conectividad dinámica es una estructura de datos que dinámicamente mantiene información sobre las componentes conexas de un grafo. El conjunto V de vértices del grafo está fijado, pero el conjunto E de las aristas pueden cambiar. Los tres casos, por orden de dificultad, son: * Las aristas son solo añadidas al grafo (esto se puede llamar conectividad incremental); * Las aristas son solo eliminadas del grafo (esto se puede llamar conectividad decremental); * Las aristas pueden ser añadidas o eliminadas (esto se puede llamar conectividad dinámica completa). Después de cada adición/eliminación de una arista, la estructura de conectividad dinámica se tendría que adaptar tal que pueda dar respuestas rápidas a las consultas de la forma "existe camino entre x e y?" (equivalente: "x e y pertenecen a la misma componente conexa?"). (es)
  • In computing and graph theory, a dynamic connectivity structure is a data structure that dynamically maintains information about the connected components of a graph. The set V of vertices of the graph is fixed, but the set E of edges can change. The three cases, in order of difficulty, are: * Edges are only added to the graph (this can be called incremental connectivity); * Edges are only deleted from the graph (this can be called decremental connectivity); * Edges can be either added or deleted (this can be called fully dynamic connectivity). After each addition/deletion of an edge, the dynamic connectivity structure should adapt itself such that it can give quick answers to queries of the form "is there a path between x and y?" (equivalently: "do vertices x and y belong to the same connected component?"). (en)
dbo:wikiPageID
  • 45284474 (xsd:integer)
dbo:wikiPageLength
  • 21541 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1117027219 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In computing and graph theory, a dynamic connectivity structure is a data structure that dynamically maintains information about the connected components of a graph. The set V of vertices of the graph is fixed, but the set E of edges can change. The three cases, in order of difficulty, are: * Edges are only added to the graph (this can be called incremental connectivity); * Edges are only deleted from the graph (this can be called decremental connectivity); * Edges can be either added or deleted (this can be called fully dynamic connectivity). (en)
  • En computación y teoría de grafos, una estructura de conectividad dinámica es una estructura de datos que dinámicamente mantiene información sobre las componentes conexas de un grafo. El conjunto V de vértices del grafo está fijado, pero el conjunto E de las aristas pueden cambiar. Los tres casos, por orden de dificultad, son: Después de cada adición/eliminación de una arista, la estructura de conectividad dinámica se tendría que adaptar tal que pueda dar respuestas rápidas a las consultas de la forma "existe camino entre x e y?" (equivalente: "x e y pertenecen a la misma componente conexa?"). (es)
rdfs:label
  • Conectividad dinámica (es)
  • Dynamic connectivity (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License