An Entity of Type: drug, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a Beurling zeta function is an analogue of the Riemann zeta function where the ordinary primes are replaced by a set of Beurling generalized primes: any sequence of real numbers greater than 1 that tend to infinity. These were introduced by Beurling.

Property Value
dbo:abstract
  • In mathematics, a Beurling zeta function is an analogue of the Riemann zeta function where the ordinary primes are replaced by a set of Beurling generalized primes: any sequence of real numbers greater than 1 that tend to infinity. These were introduced by Beurling. A Beurling generalized integer is a number that can be written as a product of Beurling generalized primes. Beurling generalized the usual prime number theorem to Beurling generalized primes. He showed that if the number N(x) of Beurling generalized integers less than x is of the form N(x) = Ax + O(x log−γx) with γ > 3/2 then the number of Beurling generalized primes less than x is asymptotic to x/log x, just as for ordinary primes, but if γ = 3/2 then this conclusion need not hold. (en)
dbo:wikiPageID
  • 31365520 (xsd:integer)
dbo:wikiPageLength
  • 1912 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1013648079 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, a Beurling zeta function is an analogue of the Riemann zeta function where the ordinary primes are replaced by a set of Beurling generalized primes: any sequence of real numbers greater than 1 that tend to infinity. These were introduced by Beurling. (en)
rdfs:label
  • Beurling zeta function (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License