In functional analysis, a branch of mathematics, the Baskakov operators are generalizations of Bernstein polynomials, Szász–Mirakyan operators, and . They are defined by where ( can be ), , and is a sequence of functions defined on that have the following properties for all : 1. * . Alternatively, has a Taylor series on . 2. * 3. * is completely monotone, i.e. . 4. * There is an integer such that whenever They are named after V. A. Baskakov, who studied their convergence to bounded, continuous functions.
Property | Value |
---|---|
dbo:abstract |
|
dbo:wikiPageID |
|
dbo:wikiPageLength |
|
dbo:wikiPageRevisionID |
|
dbo:wikiPageWikiLink | |
dbp:wikiPageUsesTemplate | |
dcterms:subject | |
rdfs:comment |
|
rdfs:label |
|
owl:sameAs | |
prov:wasDerivedFrom | |
foaf:isPrimaryTopicOf | |
is dbo:wikiPageDisambiguates of | |
is dbo:wikiPageRedirects of | |
is dbo:wikiPageWikiLink of | |
is foaf:primaryTopic of |