dbo:abstract
|
- In mathematics, the Aubin–Lions lemma (or theorem) is the result in the theory of Sobolev spaces of Banach space-valued functions, which provides a compactness criterion that is useful in the study of nonlinear evolutionary partial differential equations. Typically, to prove the existence of solutions one first constructs approximate solutions (for example, by a Galerkin method or by mollification of the equation), then uses the compactness lemma to show that there is a convergent subsequence of approximate solutions whose limit is a solution. The result is named after the French mathematicians and Jacques-Louis Lions. In the original proof by Aubin, the spaces X0 and X1 in the statement of the lemma were assumed to be reflexive, but this assumption was removed by Simon, so the result is also referred to as the Aubin–Lions–Simon lemma. (en)
- En mathématiques, le lemme (ou théorème) d'Aubin-Lions est un résultat de la théorie des espaces de Sobolev, qui fournit un critère de compacité utile dans l'étude des équations aux dérivées partielles non-linéaires. Typiquement, pour prouver l'existence de solutions on construit d'abord des solutions approchées (par exemple, par une méthode de Galerkine ou par régularisation de l'équation), puis on utilise le lemme de compacité pour montrer qu'il existe une sous-suite convergente de solutions approchées dont la limite est une solution. Le résultat porte le nom des mathématiciens français Jean-Pierre Aubin et Jacques-Louis Lions. Dans la preuve originale d'Aubin, les espaces X0 et X1 dans l'énoncé du lemme étaient supposés être réflexifs, mais cette hypothèse a été supprimée par Simon, donc le résultat est également appelé Aubin –Lions–Lemme de Simon. (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 4299 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
gold:hypernym
| |
rdf:type
| |
rdfs:comment
|
- In mathematics, the Aubin–Lions lemma (or theorem) is the result in the theory of Sobolev spaces of Banach space-valued functions, which provides a compactness criterion that is useful in the study of nonlinear evolutionary partial differential equations. Typically, to prove the existence of solutions one first constructs approximate solutions (for example, by a Galerkin method or by mollification of the equation), then uses the compactness lemma to show that there is a convergent subsequence of approximate solutions whose limit is a solution. (en)
- En mathématiques, le lemme (ou théorème) d'Aubin-Lions est un résultat de la théorie des espaces de Sobolev, qui fournit un critère de compacité utile dans l'étude des équations aux dérivées partielles non-linéaires. Typiquement, pour prouver l'existence de solutions on construit d'abord des solutions approchées (par exemple, par une méthode de Galerkine ou par régularisation de l'équation), puis on utilise le lemme de compacité pour montrer qu'il existe une sous-suite convergente de solutions approchées dont la limite est une solution. (fr)
|
rdfs:label
|
- Aubin–Lions lemma (en)
- Lemme d'Aubin–Lions (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |